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Introduction

The obstacle problem is a classic problem in mathematical analysis and the cal-

culus of variations, with applications in various fields of science and engineering,

ranging from material theory to mathematical finance. Intuitively, the problem can

be described as the search for the optimal configuration of an elastic membrane

subject to a physical obstacle. More formally, it involves finding a function that

minimizes a certain energy functional while satisfying a set of constraints imposed

by the obstacle itself.

One of the most fascinating aspects of the obstacle problem is the nature of

the free boundary, which is the boundary between the region where the solution

touches the obstacle and the region where it remains free. The regularity of this

free boundary is crucial for understanding the fine structure of the solutions to the

problem.

In this thesis, we aim to explore the obstacle problem with a particular focus on

the regularity of the free boundary. After reviewing the classical theory of the obsta-

cle problem, we will focus on modern analytical techniques, such as the monotonicity

formulas methods and geometric analysis tools, to establish optimal regularity re-

sults.

In particular, in Chapter 2, we will introduce the classical formulation of the

obstacle problem and study the fundamental properties of the solutions. In Chapter

3, we will focus on the study of the free boundary and its regularity, with particular

attention to the regular points, while in Chapter 4, we will examine the singular

points. Finally, Chapter 5 discusses Schaeffer’s conjecture in two dimensions, along

with the details of Monneau’s proof.

The core material for this thesis, in addition to the articles cited in the bib-

liography, is based on the book ”Regularity Theory for Elliptic PDE” by Xavier

Fernández-Real and Xavier Ros-Oton.
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Chapter 1

Preliminaries

We next give a quick review of some basic definitions about Lp, Sobolev, and Hölder

spaces, and some results that will be used later in the thesis.

1.1 Sobolev and Hölder spaces

Lp spaces. Given Ω ⊂ Rn and 1 ≤ p <∞, the space Lp(Ω) is the set

Lp(Ω) :=

{
u measurable in Ω :

ˆ
Ω

|u|pdx <∞

}
.

It is a Banach space, with the usual norm ||u||Lp(Ω) := (
´
Ω
|u|pdx)1/p.

When p = ∞, the space L∞(Ω) is the set of bounded functions (up to sets of measure

zero), with the norm ||u||L∞(Ω) := ess supΩ |u|.

Theorem 1.1. If u ∈ L1(Ω) then for almost every x ∈ Ω we have

lim
r→0

−
ˆ
Br(x)

|u(x)− u(y)|dy = 0.

When this holds at a point x ∈ Ω, we say that x is a Lebesgue point of u.

Here, and throughout the thesis, −́
Ω
denotes the average 1

|Ω|
´
Ω
, where Ω ⊂ Rn is

any set of finite positive measure.

Corollary 1.2. If u ∈ L1(Ω), and

ˆ
Ω

u(x)v(x) dx = 0 for all v ∈ C∞
c (Ω).

Then, u = 0 a.e in Ω.

Integration by parts A fundamental identity in the study of PDEs is the

following.
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2 CHAPTER 1. PRELIMINARIES

Theorem 1.3 (Integration by parts). Assume Ω ⊂ Rn is any bounded C1 domain.

Then, for any u, v ∈ C1(Ω̄) we have

ˆ
Ω

∂iu v dx = −
ˆ
Ω

u ∂iv dx+

ˆ
∂Ω

uv νi dS, (1.1)

where ν is the unit (outward) normal vector to ∂Ω, and i = 1, . . . , n.

Notice that, as an immediate consequence, we find the divergence theorem, as

well as Green’s first identity:

ˆ
Ω

∇u · ∇v dx = −
ˆ
Ω

u ∆v dx+

ˆ
∂Ω

u
∂v

∂ν
dS.

The regularity requirements of Theorem 1.3 can be relaxed. Indeed the domain Ω

need only to be Lipschitz, while only u, v ∈ H1(Ω) is necessary in (1.1) - where

H1(Ω) is a Sobolev space, defined below.

Sobolev spaces. Given any domain Ω ⊂ Rn and 1 ≤ p ≤ ∞, the Sobolev spaces

W 1,p(Ω) consist of all functions whose (weak) derivatives are in Lp(Ω), namely

W 1,p(Ω) :=
{
u ∈ Lp(Ω) : ∂iu ∈ Lp(Ω) for i = 1, . . . , n

}
.

We refer to the books [evans] [Bre] inserire bibliografia! for the definition of weak

derivatives and a detailed exposition on Sobolev spaces.

• (S1) The spaces W 1,p(Ω) are complete.

• (S2) The inclusion W 1,p(Ω) ⊂ Lp(Ω) is compact,

• (S3) The space H1(Ω) := W 1,2(Ω) is a Hilbert space withe the scalar product

(u, v)H1(Ω) :=

ˆ
Ω

uv +

ˆ
Ω

∇u · ∇v.

• (S4) Any bounded sequence {uk} in the Hilbert space H1(Ω) contains a weakly

convergent sequence {ukj}, that is, there exists u ∈ H1(Ω) such that

(ukj , v)H1(Ω) → (u, v)H1(Ω) for all v ∈ H1(Ω). (1.2)

in addition, such u will satisfy

||u||H1(Ω) ≤ lim inf
j→∞

||ukj ||H1(Ω) (1.3)

and since H1(Ω) is compactly embedded in L2(Ω) one has

||u||L2(Ω) = lim
j→∞

||ukj ||L2(Ω). (1.4)
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• (S5) Let Ω be any bounded Lipschitz domain, and 1 ≤ p ≤ ∞. Then, there is

a continuous (and compact for p > 1) trace operator from W 1,p(Ω) to Lp(∂Ω).

For C0 functions, such trace operator is simply u 7→ u|∂Ω.
Because of this, for any function u ∈ H1(Ω) we will still denote by u|∂Ω its

trace on ∂Ω.

• (S6) For 1 ≤ p <∞ C∞(Ω) functions are dense in W 1,p(Ω). Moreover, if Ω is

bounded and Lipschitz, C∞(Ω̄) are dense in W 1,p(Ω).

• (S7) For 1 ≤ p < ∞, we define the space W 1,p
0 (Ω) as the closure of C∞

c (Ω) in

(W 1,p(Ω). Similarly, we denote H1
0 (Ω) := W 1,p

0 (Ω). When Ω is bounded and

Lipschitz, it is the space of functions u ∈ W 1,p(Ω) such that u|∂Ω = 0.

• (S8) if u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞, then for any subdomain K ⊂⊂ Ω we have∣∣∣∣∣
∣∣∣∣∣u(x+ h)− u(x)

|h|

∣∣∣∣∣
∣∣∣∣∣
Lp(K)

≤ C||∇u||Lp(Ω)

for all h ∈ Bδ, with δ > 0 small enough. Conversely, if u ∈ Lp(Ω), 1 < p ≤ ∞,

and ∣∣∣∣∣
∣∣∣∣∣u(x+ h)− u(x)

|h|

∣∣∣∣∣
∣∣∣∣∣
Lp(K)

≤ C

for every h ∈ Bδ, then u ∈ W 1,p(Ω) and ||∇u||Lp(Ω) ≤ C. (This property fails

when p = 1.)

Theorem 1.4 (Sobolev inequality). If p < n, then(ˆ
Rn

|u|p
∗
dx

)1/p∗

≤ C

(ˆ
Rn

|∇|p dx

)1/p

,
1

p∗
=

1

p
− 1

n
,

for some constant C depending only on n and p. In particular, we have a continuous

inclusion W 1,p(Rn) ⊂ Lp
∗
(Rn).

Notice that if p ↑ n we have p∗ → ∞. In the limit case p = n, however, it is not

true that W 1,n functins are bounded.

Theorem 1.5 (Morrey inequality). If p > n, then

sup
x̸=y

|u(x)− u(y)|
|x− y|α

≤ C

(ˆ
Rn

|∇u|p
)1/p

, α = 1− n

p
,

for some constant C depending only on n and p.

In particular, when p > n any function in W 1,p(Ω) is continuous (in the sense

that it admits a continuous equivalent function).
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Theorem 1.6 (Poincaré inequality). . Let Ω ⊂ Rn be a bounded Lipschitz domain,

and let p ∈ [1,∞). Then, for any u ∈ W 1,p(Ω) we have

ˆ
Ω

|u− uΩ|p dx ≤ CΩ,p

ˆ
Ω

|∇u|p dx, uΩ := −
ˆ
u,

and ˆ
Ω

|u|p dx ≤ CΩ,p

(ˆ
Ω

|∇u|p dx+
ˆ
∂Ω

|u|∂Ω|pdσ

)
.

The constants depend only on n, p and Ω.

Hölder spaces. Given α ∈ (0, 1), The Hölder space C0,α(Ω̄) is the set of con-

tinuous functions u ∈ C(Ω̄) such that the Hölder semi-norm is finite,

[u]C0,α(Ω̄) := sup
x̸=y

|u(x)− u(y)|
|x− y|α

<∞.

The Hölder norm is

∥u∥C0,α(Ω̄) := ∥u∥L∞(Ω) + [Dku]C0,α(Ω̄),

where

∥u∥Ck(Ω̄) :=

k∑
j=1

∥Dju∥L∞(Ω).

Notice that this yields the inclusions

C0 ⊃ C0,α ⊃ Lip ⊃ C1 ⊃ C1,α ⊃ · · · ⊃ C∞.

We will write ∥u∥Ck,α(Ω) instead of ∥u∥Ck,α(Ω̄).

We state now one of the most basic theorem for the study of harmonic functions.

It gives a kind of ”maximum principle in quantitative form”. We will write that

u ∈ H1 is harmonic, meaning in the weak sense. It is well known that as soon as a

function is harmonic, it is immediately C∞.

Theorem 1.7 (Harnack’s inequality). Assume u ∈ H1(B1) is a non-negative, harm-

nic function in B1. Then the infimum and the supremum of u are comparable in

B1/2. That is, {
∆u = in B1

u = in B1
=⇒ sup

B1/2

u ≤ C inf
B1/2

u

for some constant C depending only on n.
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Proof. This can be proved by the mean value property. Alternatively, we can use

the Poisson kernel representation,

u(x) = cn

ˆ
∂B1

(1− |x|2)u(z)
|x− z|n

dz.

Notice that, for any x ∈ B1/2 and z ∈ ∂B1, we have 2−n ≤ |x − z|n ≤ (3/2)n and

3/4 ≤ 1− |x|2 ≤ 1. Thus, since u ≥ 0 in B1,

C−1

ˆ
∂B1

u(z)dz ≤ u(x) ≤ C

ˆ
∂B1

u(z)dz, for all x ∈ B1/2,

for some dimensional constant C. In particular, for any x1, x2 ∈ B1/2 we have

that u(x1) ≤ C2u(x2). Taking the infimum for x2 ∈ B1/2 and the supremum for

x1 ∈ B1/2, we reach that sup1/2 ≤ C̃ infB1/2
, for some dimensional constant C̃, as

desired.

Remark 1.8. There is nothing special about B1/2. We can obtain a similar inequality

in Bϱ, with ϱ < 1, but the constant C would depend on ϱ as well. Indeed, repeating

the previous argument, one gets that if ∆u = 0 and u ≥ 0 in B1, then

sup
Bϱ

u ≤ C

(1− ϱ)n
inf
Bϱ

u, (1.5)

For some C depending only ib n, and ϱ ∈ (0, 1).

Lemma 1.9 (Hopf Lemma). Let Ω ⊂ Rn be any domain satisfying the interior ball

condition. Let u ∈ C(Ω) be any positive harmonic function in Ω ∩ B2, with u ≥ 0

on ∂Ω ∩B2.

Then, u ≥ c◦d in Ω ∩B1 for some c◦ > 0, where d(x) := dist(x,Ωc).

Proof. Since u is positive and continuous in Ω ∩ B2, we have that u ≥ c1 > 0 in

{d ≥ ρ◦/2} ∩B3/2 for some c1 > 0.

Let us consider the solution of ∆w = 0 in Bρ◦ \ Bρ◦/2, with w = 0 on ∂Bρ◦ and

w = 1 on ∂Bρ◦/2. In particular, it is immediate to check that w ≥ c2(ρ◦ − |x|) in
Bρ◦ for some c2 > 0.

By using the function c1w(x◦+x) as a subsolution in any ball Bρ◦(x◦) ⊂ Ω∩B3/2,

we deduce that u(x) ≥ c1w(x◦+x) ≥ c1c2(ρ◦−|x−x◦|) ≥ c1c2d in Bρ◦(x◦). Setting

c◦ = c1c2 and using the previous inequality for every ball Bρ◦(x◦) ⊂ Ω ∩ B3/2, the

result follows.





Chapter 2

The obstacle problem

We now focus our attention to on a third type of nonlinear elliptic PDE: a free

boundary problem. In this kind of problem we are no longer interested in the reg-

ularity of a solution u, but also in the study of an a priori unknown interphase Γ

(the free boundary).

There is a wide variety of problems in applied sciences that can be described by

PDEs that exhibit free boundaries. Many of such problems can be written as vari-

ational inequalities, for which the solution is obtained by minimizing a constrained

energy functional. One of the most classical example is the obstacle problem.

Given a smooth function ϕ, the obstacle problem is the following:

minimize
1

2

ˆ
Ω

|∇v|2 dx among all functions v ≥ ϕ. (2.1)

v

ϕ

−∆v ≥ 0 everywhere v ≥ ϕ everywhere

∆v = 0 in {v > ϕ}

Figure 2.1: The function v minimizes the Dirichlet energy among all functions with

the same boundary values situated above the obstacle.

The interpretation of such problem is clear: one looks for the least energy func-

tion v, but the set of admissible functions consists only of functions that are above

a certain ”obstacle” ϕ.

7



8 CHAPTER 2. THE OBSTACLE PROBLEM

In the two-dimensional case, one can think of the solution v as a ”membrane”

which is elastic and is constrained to be above ϕ,(see Figure 2.1). The Euler-

Lagrange equation of the minimization problem is the following:
v ≥ ϕ in Ω

∆v ≤ 0 in Ω

∆v = 0 in the set {v > ϕ},
(2.2)

with the boundary condition v|∂Ω = g.

Indeed, notice that if we denote F(v) = 1
2

´
Ω
|∇v|2dx, then we will have

F(v + εη) ≥ F(v) for every ε ≥ 0, and η ≥ 0, η ∈ C∞
c (Ω),

which yields ∆v ≥ 0 in Ω. That is, we can perturb v with nonnegative functions

(εη) and we always get admissible functions (v+εη). However, due to the constraint

v ≥ ϕ, we cannot perturb v with negative functions in all of Ω, but only in the set

{v > ϕ}. This is why we get ∆v ≤ 0 everywhere in Ω, but ∆v = 0 only in {v > ϕ}.

As we can see later, any minimizer of (2.1) is continuous, hence the set {v > ϕ}
is open.)

Alternatively, we may consider u := v − ϕ, and the problem is equivalent to
u ≥ 0 in Ω

∆u ≤ f in Ω

∆u = f in the set {u > 0},
(2.3)

where f = ∆ϕ.

Such solution u can be obtained as follows:

minimize

ˆ
Ω

{
1

2
|∇u|2 + fu

}
dx among all functions u ≥ 0 (2.4)

Indeed

1

2

ˆ
Ω

|∇(v − ϕ)|2 dx =
1

2

ˆ
Ω

|∇v|2 dx +
1

2

ˆ
Ω

|∇ϕ|2 −
ˆ
Ω

∇u · ∇ϕ dx

= F(v) + F(ϕ) +

ˆ
Ω

u∆ϕ dx −
ˆ
∂Ω

g
∂ϕ

∂ν
dx,

where F(ϕ) and the boundary term are constant, so the variational problems (2.1)

and (2.4) are equivalent. In other words, we can make the obstacle just zero, by

adding a right-hand side f . Here, the minimization is subject to the boundary con-

ditions u|∂Ω = g̃ := g − ϕ.
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The free boundary. Let us take a closer look at the obstacle (2.3).

One of the most important features of such problems is that it has two unknowns:

the solution u, and the contact set {u = 0}. In other words, there are two regions

in Ω: one in which u = 0; and one in which ∆u = f .

These regions are characterized by the minimization problem (2.4). Moreover, if we

denot

Γ := ∂{u > 0} ∩ Ω,

then this is called the free boundary.

The obstacle problem is a free boundary problem, as it involves an unknown interface

Γ as part of the problem. More over is not difficult to see that the fact that u is

a nonnegative supersolution must imply ∇u = 0 on Γ, that is , we will have that

u ≥ 0 solves 
∆u = f in {u > 0}
u = 0 on Γ

∇u = 0 on Γ.

This is just an alternative way to write the Euler-Lagrange equation of the prob-

lem. In this way, the interface Γ appears clearly, and we see that we have both

Dirichlet and Neumann conditions on Γ.

2.1 Basic properties of Solutions I

We proceed now to study the basic properties of solutions to the obstacle problem:

existence of solutions, optimal regularity, and nondegeneracy.

Existence of solutions. Existence and uniqueness of solutions follows easily

from the fact that the functional
´
Ω
|∇v|2dx is convex, and that we want to minimize

it in the closed convex set {v ∈ H1(Ω) : v ≥ ϕ}

Proposition 2.1 (Existence and uniqueness.). Let Ω ⊂ Rn be any bounded Lipschitz

domain, abd let g : ∂Ω → R and ϕ ∈ H1(Ω) be such that

C := {w ∈ H1(Ω) : w ≥ ϕ in Ω, w|∂Ω = g} ≠ ∅.

Thene, there exists a unique minimizer of
´
Ω
|∇v|2 dx among all functions v ∈

H1(Ω) satisfying v ≥ ϕ in Ω and v|∂Ω = g.

Proof. Let

I := inf

{
1

2

ˆ
Ω

|∇w|2 dx : w ∈ H1(Ω), w|∂Ω = g, w ≥ ϕ in Ω

}
,

that is, the infimum value of F(w) = 1
2

´
Ω
|∇w|2 dx among all admissible functions

w. Let us take a sequence of functions {uk} such that
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• uk ∈ H1(Ω).

• uk|∂Ω = g and uk ≥ ϕ in Ω.

• F(uk) → I as k → ∞.

Thanks to Poincaré inequality, the sequence {uk} is uniformly bounded in H1(Ω),

and therefore there exists a subsequence {ukj} that converges to a certain function v

strongly in L2 and weakly inH1(Ω). Moreover, by compactness of the trace operator

we will have that ukj |∂Ω → v|∂Ω in L2(∂Ω), so that v|∂Ω = g. Furthermore, such

function v will satisfy F(v) ≤ lim infj→∞F(ukj), and therefore it will be a minimizer

of the energy functional. Since ukj ≥ ϕ in Ω and ukj → v in L2(Ω), we have v ≥ ϕ in

Ω. Thus, we have proved the existence of a minimizer v. Uniqueness follows directly

from the strict convexity of the functional. Indeed if v is a solution for the obstacle

problem then for every u ∈ H1
0 (Ω) we have

F(v + u) =
1

2

ˆ
Ω

|∇(v + u)|2 dx

=
1

2

ˆ
Ω

|∇v|2dx+
ˆ
Ω

∇v · ∇u dx+ 1

2

ˆ
Ω

|∇u|2 dx

= F(v) + 0 +
1

2

ˆ
Ω

|∇u|2 dx ≥ F(u),

with strict inequality if u ̸= 0. Thus, v is unique.

Now we prove that any minimizer is actually continuous.

Lemma 2.2. Let Ω ⊂ Rn be any bounded Lipschitz domain, ϕ ∈ C∞(Ω), and

v ∈ H1(Ω) be any minimizer of (2.1) subject to the boundary conditions v|∂Ω = g.

Then, −∆v ≥ 0 in Ω.

Proof. Let

F(v) =
1

2

ˆ
Ω

|∇v|2 dx.

Then, since v minimize F among all functions above the obstacle ϕ with fixed

boundary conditions on ∂Ω, we have that

F(v + εη) ≥ F(v) for every ε ≥ 0 and η ≥ 0, η ∈ C∞
c (Ω).

This yields

ε

ˆ
Ω

∇v · ∇η dx+ ε2

2

ˆ
Ω

|∇η|2 dx ≥ 0 for every ε ≥ 0and η ≥ 0, η ∈ C∞
c (Ω)

and thus ˆ
Ω

∇v · ∇η ≥ 0 for every η ≥ 0, η ∈ C∞
c (Ω).

This means that −∆v ≥ 0 in Ω in the weak sense, as desired.
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From here, by showing first that {v > ϕ} is open, we obtain the Euler-Lagrange

equations for the functional:

Proposition 2.3. Let Ω ⊂ Rn be any Lipschitz domain, ϕ ∈ C∞(Ω), and v ∈
H1(Ω) be any minimizer of (2.1) subject to the boundary conditions v|∂Ω = g. Then,

v ∈ C(Ω) and satisfies 
v ≥ ϕ in Ω

∆v ≤ 0 in Ω

∆v = 0 in {v > ϕ} ∩ Ω,

(2.5)

Proof. By construction, we already know that v ≥ ϕ in Ω and −∆v ≥ 0 in Ω, i.e, v

is weakly superharmonic. Up to replacing v in a set of measure zero, we may also

assume that v is lower semi-continuous. Thusm we only need to prove that ∆v = 0

in {v > ϕ} ∩ Ω and that v is, in fact, continuous.

In order to do that, first we prove that {v > ϕ}∩Ω is open. Let x0 ∈ {v > ϕ}∩Ω

be such that v(x0)−ϕ(x0) > ε0 > 0. By lower semi-continuity of v and by continuity

of ϕ, there exists δ > 0 such that v(x) − ϕ(x) > ε0/2 for all x ∈ Bδ(x0), hence

Bδ(x0) ⊂ {v > ϕ}. Hence {v > ϕ} ∩ Ω is open since x0 was arbitrary. This

implies also that ∆v = 0 in {v > ϕ} ∩ Ω. Indeed, for any x0 ∈ {v > ϕ} and

η ∈ C∞
c (Bδ(x0)) with |η| ≤ 1, we have v ± εη ≥ ϕ in Ω for all |ε| < ε0/2, and

therefore it is an admissible competitor to the minimization problem. Thus, we

have F(v + εη) ≥ F(v) for all |ε| < ε0, and differentiating in ε we deduce that v is

harmonic in {v > ϕ} ∩ Ω.

Finally we now show that v is continuous. By regularity of harmonic function we

already know that v is continuous in {v > ϕ} ∩Ω. Let us show that v is continuous

in {v = ϕ} ∩ Ω. Let y0 ∈ {v = ϕ} ∩ Ω, and let us argue by contradiction. That

is, since v is lower semi-continuous, let us assume that there is a sequence yk → y0
such that v(yk) → v(y0) + ε0 = ϕ(y0) + ε0 for some ε0 > 0. Since ϕ is continuous,

we may assume also that yk ∈ {v > ϕ}. Let us denote by zk the projection of yk
towards {v = ϕ}, so δk := |zk − y0| ≤ 2|yk − y0| ↓ 0 and v(zk) → v(y0) = ϕ(y0).

Now, since v is superharmonic it is true that

r 7→ −
ˆ
Br(x)

v(y) dy is monotone non-increasing for r ∈ (0, dist(x, ∂Ω)),

thus using this fact

v(zk) ≥ −
ˆ
B2δk

(yk)

v = (1− 2−n)−
ˆ
B2δk

(yk)\Bδk
(yk)

v + 2−n−
ˆ
Bδk

(yk)

v = I1 + I2.

Observe that, for the first term, since v is lower semi-continuous and δk ↓ 0, we

can assume that, for k large enough, v ≥ ϕ(y0) − 2−nε0 in B2δk , so that I1 ≥
(1−2−n)[ϕ(y0)−2−nε0]. On the other hand, since v is harmonic in Bδk(yk), we have

by mean value property that I2 = 2−nv(yk). Combining everything, we get

v(zk) ≥ (1− 2−n)[ϕ(y0)− 2−nε0] + 2−nv(yk) → ϕ(y0) + 2−2nε0
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which contradicts the fact that we had v(zk) → v(y0) = ϕ(y0). Hence, v is continuous

in Ω.

Optimal regularity of solutions. From now on, we will actually localize the

problem and study it in a ball:
v ≥ ϕ in B1

∆v ≤ 0 in B1

∆v = 0 in {v > ϕ} ∩B1.

(2.6)

We want to answer the following question:

What is the optimal regularity of solutions?

Notice that in the set {v > ϕ} the solution is harmonic, i.e. ∆v = 0, while in the

interior of {v = ϕ} we have ∆v = ∆ϕ. Thus, since ∆ϕ is in general not zero, ∆v

is discontinuous across the free boundary ∂{v > ϕ} in general. In particular, v ̸∈ C2.

We will prove that any minimizer of (2.1) is actually C1,1, which gives the answer

to the previous question.

Theorem 2.4 (Optimal regularity). Let ϕ ∈ C∞(B1), and v be any solution to

(2.6). Then v ∈ C1,1 in B1/2, with the estimate

∥v∥C1,1(B1/2) ≤ C
(
∥v∥L∞(B1) + ∥ϕ∥C1,1(B1)

)
.

The constant C depends only on n.

To prove this we need the following lemma.

Lemma 2.5. Let ϕ ∈ C∞(B1), and v be any solution to (2.6). Let x0 ∈ B1/2 be

any point on {v = ϕ}. Then, for any r ∈ (0, 14) we have

0 ≤ sup
Br(x0)

(
v − ϕ

)
≤ Cr2,

with C depending only on n and ∥ϕ∥C1,1(B1).

Proof. Without loss of generality we can assume ∥ϕ∥C1,1(B1) ≤ 1.

Let l(x) := ϕ(x0)+∇ϕ(x0) · (x−x0) be the linear part of ϕ at x0. Let r ∈ (0, 14).

Then by C1,1 regularity of ϕ, in Br(x0) we have

l(x)− r2 ≤ ϕ(x) ≤ v(x).

We want to show that, in the bakk Br(x0) we have

v(x) ≤ l(x) + Cr2
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For this, consider

w(x) := v(x)− [l(x)− r2].

This function w satisfies w ≥ 0 in Br(x0), and −∆w = −∆v ≥ 0 in Br(x0).

Let us split w into

w = w1 + w2,

with {
∆w1 = 0 in Br(x0)

w1 = w on ∂Br(x0)
and

{
−∆w2 ≥ 0 in Br(x0)

w2 = 0 on ∂Br(x0).

Notice that

0 ≤ w1 ≤ w and 0 ≤ w2 ≤ w.

We have that

w1(x0) ≤ w(x0) = v(x0)− [l(x0)− r2] = r2,

and by the Harnack inequality we get

∥w1∥L∞(Br/2(x0) ≤ Cr2.

For w2, notice that ∆w2 = ∆v, and in particular ∆w2 = 0 in {v > ϕ}. This means

that w2 attains its maximum on {v = ϕ}. But in the set {v = ϕ} we have

w2 ≤ w = ϕ− [l − r2] ≤ Cr2.

and therefore we deduce that

∥w2∥L∞(Br(x0)) ≤ Cr2.

Combining the bounds for w1 and w2, we get ∥w∥L∞(Br(x0)) ≤ Cr2. Translating this

into v, and using that ∥ϕ∥C1,1(B1) ≤ 1, we find v − ϕ ≤ Cr2 in Br/2(x0).

Therefore, we proved that:

At every free boundary point x0, v separetes from ϕ at most quadratically.

We will see that this implies the C1,1 regularity.

Proof of Theorem 2.4. Dividing v by a constant if necessary, we may assume

that ∥v∥L∞(B1)+ ∥ϕ∥C1,1(B1) ≤ 1. We already know that v ∈ C∞ in the set {v > ϕ}
(since v is harmonic), and also in the interior of the set {v = ϕ}, (since ϕ is C∞).

Moreover, on the interface Γ = ∂{v > ϕ} we have proved the quadratic growth

supBr(x0)(v − ϕ) ≤ Cr2. Let us prove that this yields the C1,1 bound we want. Let

x1 ∈ {v > ϕ} ∩ B1/2, and let x0 ∈ Γ be the closest free boundary point. Denote

ρ = |x1 − x0|. Then, we have ∆v = 0 in Bρ(x1)(mettere figura), and thus we have
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also ∆(v − l) = 0, where l is the linear part of ϕ at x0.

By estimates for harmonic functions, we find

∥D2v∥L∞(Bρ/2(x1)) = ∥D2(v − l)∥L∞/(Bρ/2()x1) ≤
C

ρ2
∥v − l∥L∞/(Bρ()x1).

But by the growth proved in the previous Lemma, we have ∥v− l∥L∞(Bρ(x1)) ≤ Cρ2,

which yields

∥D2v∥L∞(Bρ/2(x1)) ≤
C

ρ2
ρ2 = C.

In particular, ∥D2v(x1)∥ ≤ C. We can do this for all x1 ∈ {v > ϕ} ∩ B1/2,

and on ∂{v > ϕ} we have quadratic growth by Lemma 2.5, hence it follows that

∥v∥C1,1(B1/2) ≤ C, as wanted.

Nondegeneracy. We now want to prove that, at all free boundaries points, v

separates from ϕ at least quadratically.

That is, we want

0 < cr2 ≤ sup
Br(x0)

(
v − ϕ

)
≤ Cr2, (2.7)

for all free boundary points x0 ∈ ∂{v > ϕ}.

Remark 2.6. Since −∆v ≥ 0 everywhere, its is clear that if x0 ∈ ∂{v > ϕ} is a

free boundary point, then necessarily −∆ϕ(x0) ≥ 0, since v touches ϕ from above at

x0.

Proposition 2.7 (Nondegeneracy). Let ϕ ∈ C∞(B1), and v be any solution to

(2.6). Assume that ϕ satisfies −∆ϕ ≥ c0 > 0 in B1. Then, for every free boundary

point X0 ∈ {v > ϕ} ∩B1/2, we have

0 < cr2 ≤ sup
Br(x0)

(v − ϕ) ≤ Cr2 for all r ∈ (0,
1

4
),

with a constant c > 0 depending only on n and c0.

Proof. Let x1 ∈ {v > ϕ} be any point close to x0 (we will then let x1 → x0 at the

end of the proof). Consider the funtion

w(x) := v(x)− ϕ(x)− c0
2n

|x− x1|2

Then, in {v > ϕ} we have

∆w = ∆v −∆ϕ− c0 = −∆ϕ− c0 ≥ 0

and hence −∆w ≤ 0 in {v > ϕ} ∩Br(x1). Moreover, w(x1) > 0.
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By the maximum principle, w attains a positive maximum on ∂({v > ϕ}∩Br(x1)).
But on the free boundary ∂{v > ϕ} we clearly have w < 0. Therefore, there is a

point on ∂Br(x1) at which w > 0. In other words,

0 < sup
∂Br(x1)

w = sup
∂Br(x1)

(v − ϕ)− c0
2n
r2

Summary of basic properties. Let v be any solution to the obstacle problem
v ≥ ϕ in B1

∆v ≤ 0 in B1

∆v = 0 in {v > ϕ} ∩B1.

Then, we have:

• Optimal regularity: ∥v∥C1,1(B1/2)

(
∥v∥L∞(B1) + ∥ϕ∥C1,1(B1)

)
• Nondegeneracy: if −∆ϕ ≥ c0 > 0, then

0 < cr2 ≥ sup
Br(x0)

(v − ϕ) ≤ Cr2 for all r ∈ (0,
1

2
)

at all free boundary points x0 ∈ ∂{v > ϕ} ∩B1/2.

• Equivalence with zero obstacle: The problem is equivalent to
u ≥ 0 in B1

∆u ≤ f in B1

∆u = f in {u > 0} ∩B1.

where f = −∆ϕ ≥ c0 > 0.

We will next provide an alternative approach to the optimal regularity.

2.2 Basic properties of Solutions II

We proceed now to study the basic properties of solutions u ≥ 0 to the obstacle

problem (2.4).

Throughout this section we will always assume

f ≥ 0 in Ω.

We can prove the existence of solutions with the same method used in the previous

section.
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Proposition 2.8 (Existence and uniqueness). Let Ω ⊂ Rn be any bounded Lipschitz

domain, and let g : ∂Ω → R be such that

C =
{
u ∈ H1(Ω) u ≥ 0 in Ω, u|∂Ω = g

}
̸= ∅

Then, for any f ∈ L2(Ω) there exists a unique minimizer of

1

2

ˆ
Ω

|∇u|2 dx+
ˆ
Ω

fu dx

among all functions u ∈ H1(Ω) satisfying u ≥ 0 in Ω and u|∂Ω = g.

Proof. Let

I := inf

{
1

2

ˆ
Ω

|∇w|2 dx+
ˆ
Ω

fw : w ∈ H1(Ω), w|∂Ω = g, w ≥ 0 in Ω

}
,

that is, the infimum value of F(w) = 1
2

´
Ω
|∇w|2 dx +

´
Ω
fw among all admissible

functions w. Notice that, by Hölder’s inequality, F(w) < +∞ if w ∈ H1(Ω).

We take again a sequence of functions {vk} such that vk ∈ H1(Ω), vk|∂Ω = g, vk ≥ 0

in Ω, and F(vk) → I as k → ∞. By Poincaré inequality, Hölder’s inequality, and

the fact that F(vk) ≤ I + 1, for k large enough

∥vk∥2H1(Ω) ≤ C

(ˆ
Ω

|∇vk|2 +
ˆ
∂Ω

g2
)

≤ C

(
I + 1 +

ˆ
Ω

|fvk|+
1

2

ˆ
∂Ω

g2
)

≤ C

(
I + 1 + ∥f∥L2(Ω)∥vk∥H1(Ω) +

1

2

ˆ
∂Ω

g2
)
.

In particular, ∥vk∥H1(Ω) ≤ C for some constant C depending only on n, Ω, g, f ,

and I. Hence, a subsequence vkj converges to a certain function v strongly in L2(Ω)

and weakly in H1(Ω). By compactness of the trace operator vkj |∂Ω → v|∂Ω = g in

L2(Ω). Furthermore, v satisfies F(v) ≤ lim infj→∞(vkj), and therefore it will be a

minimizer of the energy functional. Since vkj ≥ 0 in Ω and vkj → v in L2(Ω), we

have v ≥ 0 in Ω. Thus, there is a minimizer v.

The uniqueness of the minimizer follows frome the stric convexity of the functional

F .

Furthermore, we have the following equivalence. (Recall that we denote u+ =

max{u, 0}, and u− = max{−u, 0}, so that u = u+ − u−).

Proposition 2.9. Let Ω ⊂ Rn be any bounded Lipschitz domain, and let g : ∂Ω → R
be such that

C =
{
u ∈ H1(Ω) : u ≥ 0 in Ω, u|∂Ω = g

}
̸= ∅.

Then, the following are equivalent.
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(i) u minimizes 1
2

´
Ω
|∇u|2 +

´
Ω
fu among all functions satisfying u ≥ 0 in Ω and

u|∂Ω = g.

(ii) u minimizes 1
2

´
Ω
|∇u|2 +

´
Ω
fu+ among all functions satisfying u|∂Ω = g.

Proof. The two functionals coincide whenever u ≥ 0. Thus, the only key point is

to prove that the minimizer in (ii) must be nonnegative, i.e., u = u+. (Notice that

C ≠ ∅ implies that g ≥ 0 on Ω.) To show this, recall that the positive part of any

H1 function is still in H1, and moreover |∇u|2 = |∇u+|2 + |∇u−|2. Thus, we have

that (recall that f ≥ 0 in Ω)

1

2

ˆ
Ω

|∇u+|2 +
ˆ
Ω

fu+ ≤ 1

2

ˆ
Ω

|∇u|2 +
ˆ
Ω

fu+,

with strict inequality unless u = u+. This means that any minimizer u of the

functional in (ii) must be nonnegative, and thus we are done.

Let us next prove that any minimizer of (2.4) is actually a solution to (mettere

equazione) below.

We recall that we are always assuming that obstacles are as smooth as necessary,

φ ∈ C∞(Ω), and therefore we assume here that f ∈ C∞(Ω) as well.

Proposition 2.10. Let Ω ⊂ Rn be any bounded Lipschitz domain, f ∈ C∞(Ω), and

u ∈ H1(Ω) be any minimizer of (2.4) subject to the boundary conditions u|∂Ω = g.

Then, u solves

∆u = fχ{u>0} in Ω (2.8)

in the weak sense.

Proof. Notice that, by Proposition 2.9, u is actually a minimizer of

F(u) =
1

2

ˆ
Ω

|∇u|2 +
ˆ
Ω

fu+

subject to the boundary conditions u|∂Ω = g.

Thus, for any η ∈ H1
0 (Ω) and ε > 0 we have

F(u+ εη) ≥ F(u).

In particular, we obtain

0 ≤ lim
ε↓0

F(u+ εη)−F(u)

ε
=

ˆ
Ω

∇u · ∇η + lim
ε↓0

ˆ
Ω

f
(u+ εη)+ − u+

ε
.

Notice that

lim
ε↓0

(u+ εη)+ − u+

ε
=

{
η in {u > 0}
η+ in {u = 0},
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so that we haveˆ
Ω

∇u · ∇η +
ˆ
Ω

fηχ{u>0} +

ˆ
Ω

fη+χ{u=0} ≥ 0 for all η ∈ H1
0 (Ω).

Assume first that η ≥ 0, so that
ˆ
Ω

∇u · ∇η +
ˆ
Ω

fη ≥ 0 for all η ∈ H1
0 (Ω), η ≥ 0,

which implies that ∆u ≤ f in the weak sense. On the other hand, if η ≤ 0, then
ˆ
Ω

∇u · ∇η +
ˆ
Ω

fηχ{u>0} ≥ 0 for all η ∈ H1
0 (Ω), η ≤ 0,

which implies that ∆u ≥ fχ{u>0} in the weak sense. In all (recall that f ≥ 0),

fχ{u>0} ≤ ∆u ≤ f in Ω.

(In particular, notice that ∆u = f in {u > 0}.) Now, since f is smooth, this

implies that ∆u ∈ L∞
loc(Ω). By Proposition ?? we deduce that u ∈ C1,1−ε for every

ε > 0. Moreover, since ∆u ∈ L∞
loc(Ω) we have ∆u ∈ L2

loc(Ω) and by Calderón-

Zygmund estimates we have u ∈ W 2,2
loc (Ω). Thus, ∆u = 0 almost everywhere in the

level set {u = 0} and we have

∆u = fχ{u>0} a.e. in Ω.

From here we deduce that ∆u = fχ{u>0} in Ω in the weak sense.

Notice that in the previous Section, when dealing with minimizers v of (2.1), it

was not easy to prove that v is continuous. Here, instead, thanks to Proposition 2.4

we simply used Schauder-type estimates for the Laplacian to directly deduce that u

is C1,1−ε, which is the almost-optimal regularity of solutions.

Alternatively we could prove the regularity in a different way as shown below.

For the sake of simlicity we assume f = 1.

Let D0 ⊂ Rn be a bounded open set with smooth boundary. Note that, by a

standard concentration-compactness, there is a solution V ∈ H1(Rn) of the auxilary

problem

min

{ˆ
Rn

(
1

2
|∇v|2 + v

)
dx : v ∈ H1(Rn) , v = 1 on D0, v ≥ 0 on Rn

}
(2.9)

We are going to prove that the set Ω = {V > 0} is open, and that V is continuous.

Remark 2.11 (Truncation). We note that any solution V to (2.9) automatically

satisfies V ≤ 1.
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Remark 2.12 (Radial solutions). Suppose that D0 ⊂ Rn is a ball of radius r0. Then

the minimizer V is radially symmetric and has compact support. In fact the radial

symmetry V (x) = V (|x|) = V (r) follows by a Schwartz symmetrization. Thus V

satisfies {
V ′′ + n−1

r V ′ = 1 on (r0,∞) ∩ {V > 0},
0 ≤ V ≤ 1, V (r0) = 1, V ′ ≤ 0.

Multiplying both sides by V ′ we get

1

2

[
|V ′(r)|2

]′
+
n− 1

r
|V ′(r)|2 = −|V ′(r)|,

and so taking f(r) = |V ′(r)|2, we get

f ′(r) ≤ −2
√
f(r) on (r0,∞) ∩ {V > 0},

and so

|V ′(r)| =
√
f(r) ≤ C − r,

for some constant C > 0, which gives the compactness of the support V .

Remark 2.13 (Comparison). Suppose that Ω0 ⊂ Ω1 are two given measurable sets

and that the functions Vi, for i = 0, 1 are minimizers respectively of

min

{ˆ
Rn

(
1

2
|∇v|2 + v

)
dx : v ∈ H1(Rn) , v = 1 on Ωi, v ≥ 0 on Rn

}
. (2.10)

Then V1 ≥ V0.

Remark 2.14 (Compact support). Suppose that V0 is a solution of (2.9) for a given

bounded measurable D0 ⊂ Rn. Then, V0 has compact support.

Remark 2.15 (Subharmonicity). . Suppose that V is a minimizer of (2.9). Then, V

is subharmonic on the open set Rn \D0. Let u ∈ H1(Rn) be such that V ≥ u and

u− V ∈ H1
0 (Rn \D0). Then

ˆ
Rn

|∇u|2 dx ≥
ˆ
Rn

|∇u+|2 dx ≥
ˆ
Rn

|∇V |2 + 2(V − u+) dx ≥
ˆ
Rn

|∇V |2 dx.

Remark 2.16 (Superharmonicity). Suppose that V is a minimizer of (2.9). Then

∆V ≤ 1 on Rn. Let φ ∈ H1(Rn) ∩ L1(Rn) be non-negative. Then for every ε > 0

ˆ
Rn

(
1

2
|∇(V + εφ)|2 + V + εφ

)
dx ≥

ˆ
Rn

1

2|∇V |2 + V
dx,

which gives ˆ
Rn

∇V · ∇φ dx+
ˆ
Rn

φ dx ≥ 0.
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Remark 2.17 (Continuity). Since V ∈ H1(Rn) satisfies

0 ≤ ∆V ≤ 1, on Rn \D0,

it is continuous on Rn \D0.

Remark 2.18 (Diameter). Since ∆V ≤ 1, for every x0 ∈ Rn such that dist(x0, D0) ≥√
2n, we have that

V (x) ≤ |x− x0|2

2n
,

and so V = 0 on the set {x ∈ Rn : dist(x,D0) >
√
2n}.

Remark 2.19 (Inner ball condition). If we suppose that D0 satisfies the inner ball

condition for a radius r0, then, by the comparison principle, we have that distD0, {V =

0} ≥ cr0 for some dimensional constant c.

Remark 2.20 (Behaviour of V near the free boundary ∂{V > 0}). Let x0 ∈ ∂{V >

0}, 0 < r < dist(D0, {V = 0}) and hV ∈ Br(x0) be the solution of

∆hv = 0 in Br(x0), hV = V on ∂Br(x0).

Then, we have hV ≥ V and −∆(hV − V ) ≤ 1 in Br(x0), which gives that

−
ˆ
Br(x0)

hV dx = hV (x0) ≤
r2

2n
.

For each y ∈ Br/2(x0) we have

V (y) ≤ hV (y) = −
ˆ
Br/2(y)

hV dx ≤ 2n−
ˆ
Br(x0)

hV dx ≤ 2n−1r2

n
.

Remark 2.21 (Behaviour of ∇V near the free boundary ∂{V > 0}). . Consider the
function ϕ : [0, 1] → R defined as

ϕ(r) =

{
1
4 −

r2

2 , for r ∈ [0, 1/2]

(r−1)2

2 , for r ∈ [1/2, 1].

We note that the funciton Φ(x) := ϕ(|x|) satisfies ∇Φ = 0 on ∂B1 and

∆Φ(x) = ∂rrϕ+
n− 1

r
∂rϕ = −nχB1/2

+
(
n− n− 1

r
χB1\B1/2

)
.

Let x0 ∈ ∂{V > 0}. Without loss of generality we can suppos x0 = 0. Let

Φr(x) := r2Φ(xr ) and consider the test function V Φr ∈ H1
0 ({V > 0} ∩Br).

−
ˆ
Br

V Φr dx =

ˆ
Br

∇V · ∇(V Φr) dx

=

ˆ
Br

|∇V |2Φr dx+
1

2

ˆ
Br

∇(V 2) · ∇Φr dx

=

ˆ
Br

|∇V |2Φr dx−
1

2

ˆ
Br

V 2∆Φr dx.
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Thus, we have

r2

2n+3
−
ˆ
Br/2

|∇V |2 dx ≤ n

2
−
ˆ
Br

V 2 dx ≤ 22n+3

n
r4,

and so

−
ˆ
Br/2

|∇V |2 dx ≤ 23n+6

n
r2.

Remark 2.22 (V ∈ C1(Rn \D0)). Each component Vi =
∂V
∂xi

of the gradient ∇V is

an harmonic function in {V > 0} \D0. Moreover, from the last inequality we have

Vi(x) → 0 as dist(x, {V = 0}) → 0, which gives that Vi is continuous on Rn \D0.

Remark 2.23 (Nondegeneracy of V ). Let x0 ∈ {V > 0} \D0. The function

U(x) = V (x)− |x− x0|2

2n
,

is harmonic in {V > 0} \D0. Then, by the maximum principle

V (x0) ≤ sup
x∈{V >0}∩∂Br(x0)

V (x)− r2

2n
.

Since the same estimate holds for every x0 ∈ {V > 0}\D0, we get that it holds also

for x0 ∈ ∂{V > 0}.

Optimal regularity of solutions

Thanks to the previous results, we know that any minimizer is continuous and solves

(2.8).

From now on, we will localize the problem and study it in a ball:{
u ≥ 0 in B1

∆u = fχ{u>0} in B1.
(2.11)

Our next goal is to answer the following question:

Question: What is the optimal regularity of solutions?

First, a few important considerations. Notice that in the set {u > 0} we have

∆u = f , while in the interior of {u = 0} we have ∆u = 0 (since u ≡ 0 there).

Thus, since f is in general not zero, ∆u is discontinuous across the free boundary

∂{u > 0} in general. In particular, u /∈ C2.

We will now prove that any minimizer of (2.4) is actually C1,1, which gives the:

Answer: u ∈ C1,1 (second derivatives are bounded but not continuous)

The precise statement and proof are given next.
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Theorem 2.24 (Optimal regularity). Let f ∈ C∞(B1), and let u be any solution

to (2.11). Then, u is C1,1 inside B1/2, with the estimate

∥u∥C1,1(B1/2) ≤ C
(
∥u∥L∞(B1) + ∥f∥Lip(B1)

)
.

The constant C depends only on n.

To prove this, the main step is the following.

Lemma 2.25. Let u be any solution to (2.11). Let x◦ ∈ B1/2 be any point on

{u = 0}. Then, for any r ∈ (0, 14) we have

0 ≤ sup
Br(x◦)

u ≤ Cr2,

with C depending only on n and ∥f∥L∞(B1).

Proof. We have that ∆u = fχ{u>0} in B1, with fχ{u>0} ∈ L∞(B1). Thus, since

u ≥ 0, we can use the Harnack inequality for the equation ∆u = fχ{u>0} in B2r(x◦),

to find

sup
Br(x◦)

u ≤ C

(
inf

Br(x◦)
u+ r2∥fχ{u>0}∥L∞(B2r(x◦))

)
.

Since u ≥ 0 and u(x◦) = 0, this yields supBr(x◦) u ≤ C∥f∥L∞(B1)r
2, as wanted.

We have proved the following:

At every free boundary point x◦, u grows (at most) quadratically.

We will see that this implies the C1,1 regularity.

Proof of Theorem 2.24. Dividing u by a constant if necessary, we may assume that

∥u∥L∞(B1) + ∥f∥Lip(B1) ≤ 1.

We already know that u ∈ C∞ in the set {u > 0} (since ∆u = f ∈ C∞ there),

and also inside the set {u = 0} (since u = 0 there). Moreover, on the interface

Γ = ∂{u > 0} we have proved the quadratic growth supBr(x◦) u ≤ Cr2. Let us prove

that this yields the C1,1 bound we want.

Let x1 ∈ {u > 0} ∩ B1/2, and let x◦ ∈ Γ be the closest free boundary point.

Denote ρ = |x1 − x◦|. Then, we have ∆u = f in Bρ(x1).

By Schauder estimates, we find

∥D2u∥L∞(Bρ/2(x1)) ≤ C

(
1

ρ2
∥u∥L∞(Bρ(x1)) + ∥f∥Lip(B1)

)
.

But by the growth proved in the previous Lemma, we have ∥u∥L∞(Bρ(x1)) ≤ Cρ2,

which yields

∥D2u∥L∞(Bρ/2(x1)) ≤ C.

In particular,

|D2u(x1)| ≤ C.

We can do this for each x1 ∈ {u > 0} ∩ B1/2, and therefore ∥u∥C1,1(B1/2) ≤ C, as

wanted.
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Also, notice that as a consequence of the previous results, we have that as soon

as the solution to (2.11) has non-empty contact set, then its C1,1 norm is universally

bounded.

Corollary 2.26. Let u be any solution to (2.11), and let us assume that u(0) = 0

and ∥f∥Lip(B1) ≤ 1. Then,

∥u∥C1,1(B1/2) ≤ C

for some C depending only on n.

Proof. It is an immediate consequence of Theorem 2.24 combined with Lemma 2.25.

Nondegeneracy. For completeness, we now state the nondegeneracy in this

setting. That is, at all free boundary points, u grows at least quadratically (we

already know at most quadratically). We want:

0 < cr2 ≤ sup
Br(x◦)

u ≤ Cr2

for all free boundary points x◦ ∈ ∂{u > 0}.
This property is essential in order to study the free boundary later. As before,

for this we need the following natural assumption:

Assumption: The right-hand side f satisfies

f ≥ c◦ > 0

in the ball B1.

Proposition 2.27 (Nondegeneracy). Let u be any solution to (2.11). Assume that

f ≥ c◦ > 0 in B1. Then, for every free boundary point x◦ ∈ ∂{u > 0} ∩ B1/2, we

have

0 < cr2 ≤ sup
Br(x◦)

u ≤ Cr2 for all r ∈ (0, 12),

with a constant c > 0 depending only on n and c◦.

Summary of basic properties. Let u be any solution to the obstacle problem{
u ≥ 0 in B1,

∆u = fχ{u>0} in B1.

Then, we have:

• Optimal regularity: ∥u∥C1,1(B1/2) ≤ C
(
∥u∥L∞(B1) + ∥f∥Lip(B1)

)
• Nondegeneracy: If f ≥ c◦ > 0, then

0 < cr2 ≤ sup
Br(x◦)

u ≤ Cr2 for all r ∈ (0, 12)

at all free boundary points x◦ ∈ ∂{u > 0} ∩B1/2.

Using these properties, we can now start the study of the free boundary.





Chapter 3

Regularity of free boundary

3.1 Regularity of free boundaries: an overview

From now on, we consider any solution to
u ∈ C1,1(B1),

u ≥ 0 in B1,

∆u = f in {u > 0},
(3.1)

(see Figure 3.1) with

f ≥ c◦ > 0 and f ∈ C∞. (3.2)

{u = 0}

∂B1

∆u = f

Γ

u ∈ C1,1

Figure 3.1: A solution to the obstacle problem in B1.

Notice that on the interface

Γ = ∂{u > 0} ∩B1

we have that

u = 0 on Γ,

∇u = 0 on Γ.

25
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The central mathematical challenge in the obstacle problem is to

understand the geometry/regularity of the free boundary Γ.

Notice that, even if we already know the optimal regularity of u (it is C1,1), we

know nothing about the free boundary Γ. A priori Γ could be a very irregular object,

even a fractal set with infinite perimeter.

As we will see, under the natural assumption f ≥ c◦ > 0, it turns out that free

boundaries are always smooth, possibly outside a certain set of singular points. In

fact, in our proofs we will assume for simplicity that f ≡ 1 (or constant). We do that

in order to avoid x-dependence and the technicalities associated to it, which gives

cleaner proofs. In this way, the main ideas behind the regularity of free boundaries

are exposed.

Main results: Assume from now on that u solves (3.1)-(3.2). Then, the main

known results on the free boundary Γ = ∂{u > 0} can be summarized as follows:

• At every free boundary point x◦ ∈ Γ, we have

0 < cr2 ≤ sup
Br(x◦)

u ≤ Cr2 ∀r ∈ (0, r◦) .

• The free boundary Γ splits into regular points and singular points.

• The set of regular points is an open subset of the free boundary, and Γ is C∞ near

these points.

• Singular points are those at which the contact set {u = 0} has zero density, and

these points (if any) are contained in an (n− 1)-dimensional C1 manifold.

Summarizing, the free boundary is smooth, possibly outside a certain set of sin-

gular points. See Figure 3.2.

{u = 0}
{u = 0}

∆u = f in {u > 0}

all regular points

one singular point
(the contact set has zero density)

Figure 3.2: Singular points are those where the contact set has zero density.

So far, we have not even proved that Γ has finite perimeter, or anything at all

about Γ. Our goal will be to prove that Γ is C∞ near regular points.

Overview of the strategy

To prove these regularity results for the free boundary, one considers blow-ups.

Namely, given any free boundary point x◦ for a solution u of (3.1)-(3.2), one takes
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the rescalings

ur(x) :=
u(x◦ + rx)

r2
,

with r > 0 small. This is like “zooming in” at a free boundary point.

The factor r−2 is chosen so that

∥ur∥L∞(B1) ≈ 1

as r → 0; recall that 0 < cr2 ≤ supBr(x◦) u ≤ Cr2.

Then, by C1,1 estimates, we will prove that a subsequence of ur converges to a

function u0 locally uniformly in Rn as r → 0. Such function u0 is called a blow-up

of u at x◦.

Any blow-up u0 is a global solution to the obstacle problem, with f ≡ 1 (or with

f ≡ constant > 0).

Then, the main issue is to classify blow-ups : that is, to show that

either u0(x) =
1
2(x · e)

2
+ (this happens at regular points)

or u0(x) =
1
2x

TAx (this happens at singular points).

Here, e ∈ Sn−1 is a unit vector, and A ≥ 0 is a positive semi-definite matrix satis-

fying trA = 1. Notice that the contact set {u0 = 0} becomes a half-space in case of

regular points, while it has zero measure in case of singular points;

Once this is done, one has to “transfer” the information from the blow-up u0 to

the original solution u. Namely, one shows that, in fact, the free boundary is C1,α

near regular points (for some small α > 0).

Finally, once we know that the free boundary is C1,α, we will bootstrap the regu-

larity to C∞. Once this was done, by Schauder estimates and a bootstrap argument

we saw that solutions are actually C∞.

Thus, how can we classify blow-ups? Do we get any extra information on u0 that

we did not have for u? (Otherwise it seems hopeless!)

The answer is yes : Convexity. We will prove that all blow-ups are always

convex. This is a huge improvement, since this yields that the contact set {u0 = 0}
is also convex. Prior to that, we will also show that blow-ups are also homogeneous.

So, before the blow-up we had no information on the set {u = 0}, but after the
blow-up we get that {u0 = 0} is a convex cone. Thanks to this we will be able to

classify blow-ups, and thus to prove the regularity of the free boundary.

The main steps in the proof of the regularity of the free boundary will be the

following:

1. 0 < cr2 ≤ supBr(x◦) u ≤ Cr2

2. Blow-ups u0 are homogeneous and convex.
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3. If the contact set has positive density at x◦, then u0(x) =
1
2(x · e)

2
+.

4. Deduce that the free boundary is C1,α near x◦.

5. Deduce that the free boundary is C∞ near x◦.

The proof we will present here for the convexity of blow-ups is new, based on the

fact that they are homogeneous. We refer to [Caf98], [PSU12], [Wei99], and [KN77],

for different proofs of the classification of blow-ups and/or of the regularity of free

boundaries.

3.2 Classification of blow-ups

The aim of this Section is to classify all possible blow-ups u0. For this, we will first

prove that blow-ups are homogeneous, then we will prove that they are convex, and

finally we will establish their complete classification.

3.2.1 Homogeneity of blow-ups

We start by proving that blow-ups are homogeneous. This is not essential in the

proof of the regularity of the free boundary (see [Caf98]), but it actually simplifies

it.

Therefore, from now on we consider a solution u satisfying (see Figure 3.3):

u ∈ C1,1(B1)

u ≥ 0 in B1

∆u = 1 in {u > 0}
0 is a free boundary point.

(3.3)

We will prove all the results around the origin (without loss of generality).

0

{u = 0}

B1

∆u = 1

Figure 3.3: A solution u to the obstacle problem with f ≡ 1.
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We will show that, for the original solution u in B1, the closer we look at a free

boundary point x◦, the closer is the solution to being homogeneous.

Proposition 3.1 (Homogeneity of blow-ups). Let u be any solution to (3.3). Then,

any blow-up of u at 0 is homogeneous of degree 2.

It is important to remark that not all global solutions to the obstacle problem

in Rn are homogeneous. There exist global solutions u0 that are convex, C1,1,

and whose contact set {u0 = 0} is an ellipsoid, for example. However, thanks to

the previous result, we find that such non-homogeneous solutions cannot appear as

blow-ups, i.e., that all blow-ups must be homogeneous.

We provide two different proofs of Proposition 3.1. The first one uses a mono-

tonicity formula as introduced by Weiss; while the second one does not require any

monotonicity formula and is due to Spruck.

For the first proof of Proposition 3.1, we need the following monotonicity formula

due to Weiss [Wei99].

Theorem 3.2 (Weiss’ monotonicity formula). Let u be any solution to (3.3). Then,

the quantity

Wu(r) :=
1

rn+2

ˆ
Br

{
1
2 |∇u|

2 + u
}
− 1

rn+3

ˆ
∂Br

u2 (3.4)

is monotone in r, that is,

d

dr
Wu(r) =

1

rn+4

ˆ
∂Br

(x · ∇u− 2u)2dx ≥ 0

for r ∈ (0, 1).

Proof. Let ur(x) = r−2u(rx), and observe that

Wu(r) =

ˆ
B1

{
1
2 |∇ur|

2 + ur
}
−
ˆ
∂B1

u2r.

Using this, together with
d

dr
(∇ur) = ∇ d

dr
ur,

we find
d

dr
Wu(r) =

ˆ
B1

{
∇ur · ∇

d

dr
ur +

d

dr
ur

}
− 2

ˆ
∂B1

ur
d

dr
ur.

Now, integrating by parts we get

ˆ
B1

∇ur · ∇
d

dr
ur = −

ˆ
B1

∆ur
d

dr
ur +

ˆ
∂B1

∂ν(ur)
d

dr
ur.
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Since ∆ur = 1 in {ur > 0} and d
drur = 0 in {ur = 0}, we have

ˆ
B1

∇ur · ∇
d

dr
ur = −

ˆ
B1

d

dr
ur +

ˆ
∂B1

∂ν(ur)
d

dr
ur.

Thus, we deduce

d

dr
Wu(r) =

ˆ
∂B1

∂ν(ur)
d

dr
ur − 2

ˆ
∂B1

ur
d

dr
ur.

Using that on ∂B1 we have ∂ν = x · ∇, combined with

d

dr
ur =

1

r
{x · ∇ur − 2ur}

yields
d

dr
Wu(r) =

1

r

ˆ
∂B1

(x · ∇ur − 2ur)
2 ,

which gives the desired result.

We now give the:

First proof of Proposition 3.1. Let ur(x) = r−2u(rx), and notice that we have the

scaling property

Wur(ρ) = Wu(ρr),

for any r, ρ > 0.

If u0 is any blow-up of u at 0 then there is a sequence rj → 0 satisfying urj → u0
in C1

loc(Rn). Thus, for any ρ > 0 we have

Wu0(ρ) = lim
rj→0

Wurj
(ρ) = lim

rj→0
Wu(ρrj) = Wu(0

+).

Notice that the limit Wu(0
+) := limr→0Wu(r) exists by monotonicity of W and

since u ∈ C1,1 implies Wu(r) ≥ −C for all r ≥ 0.

Hence, the functionWu0(ρ) is constant in ρ. However, by Theorem 3.2 this yields

that x · ∇u0 − 2u0 ≡ 0 in Rn, and therefore u0 is homogeneous of degree 2.

Remark 3.3. Here, we used that a C1 function u0 is 2-homogeneous (i.e. u0(λx) =

λ2u0(x) for all λ ∈ R+) if and only if x · ∇u0 ≡ 2u0.

This is because ∂λ|λ=1

{
λ−2u0(λx)

}
= x · ∇u0 − 2u0.

We present an alternative (and quite different) proof of the homogeneity of blow-

ups. Such proof is due to Spruck [Spr83] and is not based on any monotonicity

formula.

Second proof of Proposition 3.1. Let u0 be a blow-up given by the limit along a

sequence rk ↓ 0,

u0(x) := lim
k→∞

r−2
k u(rkx).
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By taking polar coordinates (ϱ, θ) ∈ [0,+∞)×Sn−1 with x = ϱθ, and by denoting

ũ0(ϱ, θ) = u0(ϱθ) = u0(x), we will prove that u0(x) = ϱ2ũ0(1, θ) = |x|2u0(x/|x|).
Let us define τ := − log ϱ, ũ(ϱ, θ) = u(x), and ψ = ψ(τ, θ) as

ψ(τ, θ) := ϱ−2ũ(ϱ, θ) = e2τu(e−τθ)

for τ ≥ 0. We observe that, since ∥u∥L∞(Br) ≤ Cr2, ψ is bounded. Moreover,

ψ ∈ C1((0,∞) × Sn−1) ∩ C2({ψ > 0}) from the regularity of u; and ∂τψ and ∇θψ

are not only continuous, but also uniformly bounded in [0,∞)× Sn−1. Indeed,∣∣∇θψ(τ, θ)
∣∣ ≤ eτ

∣∣∇u(e−τθ)∣∣ ≤ C,

since ∥∇u∥L∞(Br) ≤ Cr by C1,1 regularity and the fact that ∇u(0) = 0. For the

same reason we also obtain∣∣∂τψ(τ, θ)∣∣ ≤ 2ψ(τ, θ) + eτ
∣∣∇u(e−τθ)∣∣ ≤ C.

Observe that, by assumption, if we denote τk := − log rk,

ψ(τk, θ) → ũ0(1, θ) uniformly on Sn−1, as k → ∞. (3.5)

Let us now write an equation for ψ. In order to do that, since we know that

∆u = χ{u>0} and χ{u>0} = χ{ψ>0}, we have

∆
(
ϱ2ψ(− log ϱ, θ)

)
= χ{ψ>0}.

By expanding the Laplacian in polar coordinates, ∆ = ∂ϱϱ +
n−1
ϱ ∂ϱ + ϱ−2∆Sn−1

(where ∆Sn−1 denotes the spherical Laplacian, i.e. the Laplace–Beltrami operator

on Sn−1) we obtain

2nψ − (n+ 2)∂τψ + ∂ττψ +∆Sn−1ψ = χ{ψ>0}. (3.6)

We multiply the previous equality by ∂τψ, and integrate in [0, τ ]×Sn−1. We can

consider the terms separately, integrating in τ first,

2n

ˆ
Sn−1

ˆ τ

0

ψ∂τψ = n

ˆ
Sn−1

(
ψ2(τ, θ)− ψ2(0, θ)

)
dθ

and ˆ
Sn−1

ˆ τ

0

∂ττψ∂τψ =
1

2

ˆ
Sn−1

(
(∂τψ)

2(τ, θ)− (∂τψ)
2(0, θ)

)
dθ,

and then integrating by parts in θ first, to integrate in τ afterwards:

ˆ τ

0

ˆ
Sn−1

∆Sn−1ψ∂τψ = −1

2

ˆ τ

0

ˆ
Sn−1

∂τ |∇θψ|2

=
1

2

ˆ
Sn−1

(
|∇θψ|2(0, θ)− |∇θψ|2(τ, θ)

)
dθ.
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Finally, since ∂τψ = 0 whenever ψ = 0, we have χ{ψ>0}∂τψ = ∂τψ and

ˆ
Sn−1

ˆ τ

0

χ{ψ>0}∂τψ =

ˆ
Sn−1

(
ψ(τ, θ)− ψ(0, θ)

)
dθ.

In all, plugging back in (3.6) the previous expressions, and using that ∂τψ and

∇θψ are uniformly bounded in [0,∞)× Sn−1, we deduce that

ˆ ∞

0

ˆ
Sn−1

(∂τψ)
2 =

ˆ ∞

0

∥∂τψ∥2L2(Sn−1) ≤ C <∞. (3.7)

To finish, now observe that for any |s| ≤ C∗ fixed and for a sufficiently large k

(such that τk + s ≥ 0),

∥ψ(τk + s, ·)− ũ0(1, ·)∥L2(Sn−1) ≤ ∥ψ(τk + s, ·)− ψ(τk, ·)∥L2(Sn−1)

+ ∥ψ(τk, ·)− ũ0(1, ·)∥L2(Sn−1).

The last term goes to zero, by (3.5). On the other hand, for the first term and by

Hölder’s inequality

∥ψ(τk + s, ·)− ψ(τk, ·)∥2L2(Sn−1) ≤
∥∥∥∥ˆ s

0

∂τψ(τk + τ, ·) dτ
∥∥∥∥2
L2(Sn−1)

≤ C∗

∣∣∣∣ˆ τk+s

τk

∥∂τψ∥2L2(Sn−1)

∣∣∣∣→ 0,

as k → ∞, where we are using (3.7). Hence, ψ(τk + s, ·) → ũ0(1, ·) in L2(Sn−1) as

k → ∞, for any fixed s ∈ R. On the other hand,

ψ(τk + s, θ) = e2sr−2
k u(e−2rkθ) → e2su0(e

−sθ) = e2sũ0(e
−s, θ).

That is, for any ρ = e−s > 0,

ũ0(1, ·) = ρ−2ũ0(ρ, θ),

as we wanted to see.

By taking advantage of the fact that we know that blow-ups are 2-homogeneous,

we can now give a short (and new) proof of the fact that they are also convex. More

precisely, we will prove that 2-homogeneous global solutions to the obstacle problem

are convex (and in particular, by Proposition 3.1, blow-ups are convex).

Theorem 3.4. Let u0 ∈ C1,1 be any 2-homogeneous global solution to
u0 ≥ 0 in Rn

∆u0 = 1 in {u0 > 0}
0 is a free boundary point.

Then, u0 is convex.
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The heuristic idea behind the proof of the previous result is the following: second

derivatives D2u0 are harmonic in {u0 > 0} and satisfy that D2u0 ≥ 0 on ∂{u0 >
0} (since u0 ≥ 0, it is “convex at the free boundary”). Since D2u0 is also 0-

homogeneous, we can apply the maximum principle and conclude that D2u0 ≥ 0

everywhere. That is, u0 is convex. Let us formalize the previous heuristic idea into

an actual proof.

We state a short lemma before providing the proof, which says that if w ≥ 0 is

superharmonic in {w > 0}, then it is superharmonic everywhere. For the sake of

generality, we state the lemma for general H1 functions, but we will use it only for

functions that are also continuous.

Lemma 3.5. Let Λ ⊂ B1 be closed. Let w ∈ H1(B1) be such that w ≥ 0 on Λ

and such that w is superharmonic in the weak sense in B1 \ Λ. Then min{w, 0} is

superharmonic in the weak sense in B1.

We now give the:

Proof of Theorem 3.4. Let e ∈ Sn−1 and consider the second derivatives ∂eeu0. We

define

w0 := min{∂eeu0, 0}

and we claim that w0 is superharmonic in Rn, in the sense (??).

Indeed, let δ2t u0(x) for t > 0 be defined by

δ2t u0(x) :=
u0(x+ te) + u0(x− te)− 2u0(x)

t2
.

Now, since ∆u0 = χ{u0>0}, we have that

∆δ2t u0 =
1

t2

(
χ{u0( ·+te)} + χ{u0( · −te)} − 2

)
≤ 0 in {u0 > 0}

in the weak sense. On the other hand, δ2t u0 ≥ 0 in {u0 = 0} and δ2t u0 ∈ C1,1.

Thus, by Lemma 3.5, wt := min{δ2t u0, 0} is weakly superharmonic. Also notice that

δ2t u0(x) is uniformly bounded independently of t, since u0 ∈ C1,1, and therefore wt
is uniformly bounded in t and converges pointwise to w0 as t ↓ 0. In particular, we

have that w0 is superharmonic.

Up to changing it in a set of measure 0, w0 is lower semi-continuous. In particular,

since w0 is 0-homogeneous, it must attain its minimum at a point y◦ ∈ B1. But

since −́
Br(y◦)

w0 is non-increasing for r > 0, we must have that w0 is constant. Since

it vanishes on the free boundary, we have w0 ≡ 0. That is, for any e ∈ Sn−1 we

have that ∂eeu0 ≥ 0 and therefore u0 is convex.



34 CHAPTER 3. REGULARITY OF FREE BOUNDARY

3.2.2 Classification of blow-ups

We next want to classify all possible blow-ups for solutions to the obstacle problem

(3.3). First, we will prove the following.

Proposition 3.6. Let u be any solution to (3.3), and let

ur(x) :=
u(rx)

r2
.

Then, for any sequence rk → 0 there is a subsequence rkj → 0 such that

urkj −→ u0 in C1
loc(Rn)

as kj → ∞, for some function u0 satisfying

u0 ∈ C1,1
loc (Rn)

u0 ≥ 0 in B1

∆u0 = 1 in {u0 > 0}
0 is a free boundary point

u0 is convex

u0 is homogeneous of degree 2.

Proof. By C1,1 regularity of u, and by nondegeneracy, we have that

1

C
≤ sup

B1

ur ≤ C

for some C > 0. Moreover, again by C1,1 regularity of u, we have

∥D2ur∥L∞(B1/(2r)) ≤ C.

Since the sequence {urk}, for rk → 0, is uniformly bounded in C1,1(K) for each

compact set K ⊂ Rn, there is a subsequence rkj → 0 such that

urkj −→ u0 in C1
loc(Rn)

for some u0 ∈ C1,1(K). Moreover, such function u0 satisfies ∥D2u0∥L∞(K) ≤ C,

with C independent of K, and clearly u0 ≥ 0 in K.

The fact that ∆u0 = 1 in {u0 > 0}∩K can be checked as follows. For any smooth

function η ∈ C∞
c ({u0 > 0} ∩K) we will have that, for kj large enough, urkj > 0 in

the support of η, and thusˆ
Rn

∇urkj · ∇η dx = −
ˆ
Rn

η dx.

Since urkj → u0 in C1(K), we can take the limit kj → ∞ to get

ˆ
Rn

∇u0 · ∇η dx = −
ˆ
Rn

η dx.
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Since this can be done for any η ∈ C∞
c ({u > 0} ∩ K), and for every K ⊂ Rn, it

follows that ∆u0 = 1 in {u0 > 0}.
The fact that 0 is a free boundary point for u0 follows simply by taking limits to

urkj (0) = 0 and ∥urkj ∥L∞(Bρ) ≈ ρ2 for all ρ ∈ (0, 1). Finally, the homogeneity and

convexity of u0 follow from Proposition 3.1 and Theorem 3.4.

Our next goal is to prove the following.

Theorem 3.7 (Classification of blow-ups). Let u be any solution to (3.3), and let

u0 be any blow-up of u at 0. Then,

(a) either

u0(x) =
1

2
(x · e)2+

for some e ∈ Sn−1.

(b) or

u0(x) =
1

2
xTAx

for some matrix A ≥ 0 with trA = 1.

It is important to remark here that, a priori, different subsequences could lead

to different blow-ups u0.

In order to establish Theorem 3.7, we will need the following.

Lemma 3.8. Let Σ ⊂ Rn be any closed convex cone with nonempty interior, and

with vertex at the origin. Let w ∈ C(Rn) be a function satisfying ∆w = 0 in Σc,

w > 0 in Σc, and w = 0 in Σ.

Assume in addition that w is homogeneous of degree 1. Then, Σ must be a half-

space.

Proof. By convexity of Σ, there exists a half-space H = {x · e > 0}, with e ∈ Sn−1,

such that H ⊂ Σc.

Let v(x) = (x · e)+, which is harmonic and positive in H, and vanishes in Hc.

By the Hopf Lemma (see Lemma 1.9), we have that w ≥ c◦dΣ in Σc ∩ B1, where

dΣ(x) = dist(x,Σ) and c◦ is a small positive constant. In particular, since both w

and dΣ are homogeneous of degree 1, we deduce that w ≥ c◦dΣ in all of Σc. Notice

that, in order to apply the Hopf Lemma, we used that — by convexity of Σ — the

domain Σc satisfies the interior ball condition.

Thus, since dΣ ≥ dHc = v, we deduce that w ≥ c◦v, for some c◦ > 0. The

idea is now to consider the functions w and cv, and let c > 0 increase until the

two functions touch at one point, which will give us a contradiction (recall that two

harmonic functions cannot touch at an interior point). To do this rigorously, define

c∗ := sup{c > 0 : w ≥ cv in Σc}.
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Notice that c∗ ≥ c◦ > 0. Then, we consider the function w − c∗v ≥ 0. Assume

that w − c∗v is not identically zero. Such function is harmonic in H and hence, by

the strict maximum principle, w − c∗v > 0 in H. Then, using the Hopf Lemma in

H (see Lemma 1.9) we deduce that w − c∗v ≥ c◦dHc = c◦v, since v is exactly the

distance to Hc. But then we get that w − (c∗ + c◦)v ≥ 0, a contradiction with the

definition of c∗.

Therefore, it must be w − c∗v ≡ 0. This means that w is a multiple of v, and

therefore Σ = Hc, a half-space.

We will also need the following.

Lemma 3.9. Assume that ∆u = 1 in Rn \ ∂H, where ∂H is a hyperplane. If

u ∈ C1(Rn), then ∆u = 1 in Rn.

Proof. Assume ∂H = {x1 = 0}. For any ball BR ⊂ Rn, we consider the solution to

∆w = 1 in BR, w = u on ∂BR, and define v = u − w. Then, we have ∆v = 0 in

BR \ ∂H, and v = 0 on ∂BR. We want to show that u coincides with w, that is,

v ≡ 0 in BR.

For this, notice that since v is bounded, for κ > 0 large enough we have

v(x) ≤ κ(2R− |x1|) in BR,

where 2R − |x1| is positive in BR and harmonic in BR \ {x1 = 0}. Thus, we may

consider κ∗ := inf{κ ≥ 0 : v(x) ≤ κ(2R − |x1|) in BR}. Assume κ∗ > 0. Since

v and 2R − |x1| are continuous in BR, and v = 0 on ∂BR, we must have a point

p ∈ BR at which v(p) = κ∗(2R − |p1|). Moreover, since v is C1, and the function

2R−|x1| has a wedge on ∂H = {x1 = 0}, we must have p ∈ BR \∂H. However, this

is not possible, as two harmonic functions cannot touch tangentially at an interior

point p. This means that κ∗ = 0, and hence v ≤ 0 in BR. Repeating the same

argument with −v instead of v, we deduce that v ≡ 0 in BR, and thus the lemma is

proved.

Finally, we will use the following basic property of convex functions.

Lemma 3.10. Let u : Rn → R be a convex function such that the set {u = 0}
contains the straight line {te′ : t ∈ R}, e′ ∈ Sn−1. Then, u(x + te′) = u(x) for all

x ∈ Rn and all t ∈ R.

Proof. After a rotation, we may assume e′ = en. Then, writing x = (x′, xn) ∈
Rn−1 × R, we have that u(0, xn) = 0 for all xn ∈ R, and we want to prove that

u(x′, xn) = u(x′, 0) for all x′ ∈ Rn−1 and all xn ∈ R.

Now, by convexity, given x′ and xn, for every ε > 0 and M ∈ R we have

(1− ε)u(x′, xn) + εu(0, xn +M) ≥ u((1− ε)x′, xn + εM).

Since u(0, xn +M) = 0, choosing M = λ/ε and letting ε→ 0 we deduce that

u(x′, xn) ≥ u(x′, xn + λ).

Since this can be done for any λ ∈ R and xn ∈ R, the result follows.
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We finally establish the classification of blow-ups at regular points.

Proof of Theorem 3.7. Let u0 be any blow-up of u at 0. We already proved that u0
is convex and homogeneous of degree 2. We divide the proof into two cases.

Case 1. Assume that {u0 = 0} has nonempty interior. Then, we have {u0 = 0} = Σ,

a closed convex cone with nonempty interior.

For any direction τ ∈ Sn−1 such that −τ ∈ Σ̊, we claim that

∂τu0 ≥ 0 in Rn.

Indeed, for every x ∈ Rn we have that u0(x+ τt) is zero for t ≪ −1, and therefore

by convexity of u0 we get that ∂tu0(x + τt) is monotone non-decreasing in t, and

zero for t≪ −1. This means that ∂tu0 ≥ 0, and thus ∂τu0 ≥ 0 in Rn, as claimed.

Now, for any such τ , we define w := ∂τu0 ≥ 0. Notice that, at least for some

τ ∈ Sn−1 with −τ ∈ Σ̊, the function w is not identically zero. Moreover, since it is

harmonic in Σc — recall that ∆u0 = 1 in Σc — then w > 0 in Σc.

But then, since w is homogeneous of degree 1, we can apply Lemma 3.8 to deduce

that we must necessarily have that Σ is a half-space.

By convexity of u0 and Lemma 3.10, this means that u0 is a one-dimensional

function, i.e., u0(x) = U(x · e) for some U : R → R and some e ∈ Sn−1. Thus, we

have that U ∈ C1,1 solves U ′′(t) = 1 for t > 0, with U(t) = 0 for t ≤ 0. We deduce

that U(t) = 1
2t

2
+, and therefore u0(x) =

1
2(x · e)

2
+.

Case 2. Assume now that {u0 = 0} has empty interior. Then, by convexity, {u0 =

0} is contained in a hyperplane ∂H. Hence, ∆u0 = 1 in Rn \ ∂H, with ∂H being

a hyperplane, and u0 ∈ C1,1. It follows from Lemma 3.9 that ∆u0 = 1 in all of

Rn. But then all second derivatives of u0 are harmonic and globally bounded in

Rn, so they must be constant. Hence, u0 is a quadratic polynomial. Finally, since

u0(0) = 0, ∇u0(0) = 0, and u0 ≥ 0, we deduce that u0(x) =
1
2x

TAx for some A ≥ 0,

and since ∆u0 = 1, we have trA = 1.

3.3 Regularity of the free boundary

The aim of this Section is to prove Theorem 3.19 below, i.e., that if u is any solution

to (3.3) satisfying

lim sup
r→0

∣∣{u = 0} ∩Br
∣∣

|Br|
> 0 (3.8)

(i.e., the contact set has positive density at the origin), then the free boundary

∂{u > 0} is C∞ in a neighborhood of the origin.

For this, we will use the classification of blow-ups established in the previous

Section.
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C1,α regularity of the free boundary

The first step here is to transfer the local information on u given by (3.8) into a

blow-up u0. More precisely, we next show that

(3.8) =⇒ The contact set of a blow-up u0
has nonempty interior.

Lemma 3.11. Let u be any solution to (3.3), and assume that (3.8) holds. Then,

there is at least one blow-up u0 of u at 0 such that the contact set {u0 = 0} has

nonempty interior.

Proof. Let rk → 0 be a sequence along which

lim
rk→0

∣∣{u = 0} ∩Brk
∣∣

|Brk |
≥ θ > 0.

Such sequence exists (with θ > 0 small enough) by assumption (3.8).

Recall that, thanks to Proposition 3.6, there exists a subsequence rkj ↓ 0 along

which urkj → u0 uniformly on compact sets of Rn, where ur(x) = r−2u(rx) and u0
is convex.

Assume by contradiction that {u0 = 0} has empty interior. Then, by convexity,

we have that {u0 = 0} is contained in a hyperplane, say {u0 = 0} ⊂ {x1 = 0}.
Since u0 > 0 in {x1 ̸= 0} and u0 is continuous, we have that for each δ > 0

u0 ≥ ε > 0 in {|x1| > δ} ∩B1

for some ε > 0.

Therefore, by uniform convergence of urkj to u0 in B1, there is rkj > 0 small

enough such that

urkj ≥ ε

2
> 0 in {|x1| > δ} ∩B1.

In particular, the contact set of urkj is contained in {|x1| ≤ δ} ∩B1, so∣∣{urkj = 0} ∩B1

∣∣
|B1|

≤
∣∣{|x1| ≤ δ} ∩B1

∣∣
|B1|

≤ Cδ.

Rescaling back to u, we find∣∣{u = 0} ∩Brkj
∣∣

|Brkj |
=

∣∣{urkj = 0} ∩B1

∣∣
|B1|

< Cδ.

Since we can do this for every δ > 0, we find that limrkj→0

|{u=0}∩Brkj
|

|Brkj
| = 0, a

contradiction. Thus, the lemma is proved.

Combining the previous lemma with the classification of blow-ups from the pre-

vious Section, we deduce:
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Corollary 3.12. Let u be any solution to (3.3), and assume that (3.8) holds. Then,

there is at least one blow-up of u at 0 of the form

u0(x) =
1

2
(x · e)2+, e ∈ Sn−1.

Proof. The result follows from Lemma 3.11 and Theorem 3.7.

We now want to use this information to show that the free boundary must be

smooth in a neighborhood of 0. For this, we start with the following.

Proposition 3.13. Let u be any solution to (3.3), and assume that (3.8) holds. Fix

any ε > 0. Then, there exist e ∈ Sn−1 and r◦ > 0 such that∣∣ur◦(x)− 1
2(x · e)

2
+

∣∣ ≤ ε in B1,

and ∣∣∂τur◦(x)− (x · e)+(τ · e)
∣∣ ≤ ε in B1

for all τ ∈ Sn−1.

Proof. By Corollary 3.12 and Proposition 3.6, we know that there is a subsequence

rj → 0 for which urj → 1
2(x · e)

2
+ in C1

loc(Rn), for some e ∈ Sn−1. In particular, for

every τ ∈ Sn−1 we have urj → 1
2(x · e)

2
+ and ∂τurj → ∂τ

[
1
2(x · e)

2
+

]
uniformly in B1.

This means that, given ε > 0, there exists j◦ such that∣∣urj◦ (x)− 1
2(x · e)

2
+

∣∣ ≤ ε in B1,

and ∣∣∂τurj◦ (x)− ∂τ
[
1
2(x · e)

2
+

]∣∣ ≤ ε in B1.

Since ∂τ
[
1
2(x · e)

2
+

]
= (x · e)+(τ · e), the proposition is proved.

Now, notice that if (τ · e) > 0, then the derivatives ∂τu0 = (x · e)+(τ · e) are

nonnegative, and strictly positive in {x · e > 0}.

We want to transfer this information to ur◦ , and prove that ∂τur◦ ≥ 0 in B1 for

all τ ∈ Sn−1 satisfying τ · e ≥ 1
2 . For this, we need a lemma.

Lemma 3.14. Let u be any solution to (3.3), and consider ur◦(x) = r−2
◦ u(r◦x) and

Ω = {ur◦ > 0}.
Assume that a function w ∈ C(B1) satisfies:

(a) w is bounded and harmonic in Ω ∩B1.

(b) w = 0 on ∂Ω ∩B1.

(c) Denoting Nδ := {x ∈ B1 : dist(x, ∂Ω) < δ}, we have

w ≥ −c1 in Nδ and w ≥ C2 > 0 in Ω \Nδ.
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If c1/C2 is small enough, and δ > 0 is small enough, then w ≥ 0 in B1/2 ∩ Ω.

Proof. Notice that in Ω \Nδ we already know that w > 0. Let y◦ ∈ Nδ ∩ Ω ∩B1/2,

and assume by contradiction that w(y0) < 0.

Consider, in B1/4(y◦), the function

v(x) = w(x)− γ
{
ur◦(x)−

1

2n
|x− y◦|2

}
.

Then, ∆v = 0 in B1/4(y◦) ∩ Ω, and v(y◦) < 0. Thus, v must have a negative

minimum in ∂
(
B1/4(y◦) ∩ Ω

)
.

However, if c1/C2 and δ are small enough, then we reach a contradiction as

follows:

On ∂Ω we have v ≥ 0. On ∂B1/4(y◦) ∩Nδ we have

v ≥ −c1 − C◦γδ
2 +

γ

2n

(
1

4

)2
≥ 0 on ∂B1/4(y◦) ∩Nδ.

On ∂B1/4(y◦) ∩
(
Ω \Nδ

)
we have

v ≥ C2 − C◦γ ≥ 0 on ∂B1/4(y◦) ∩
(
Ω \Nδ

)
.

Here, we used that ∥ur◦∥C1,1(B1) ≤ C◦, and chose C◦c1 ≤ γ ≤ C2/C◦.

Using the previous lemma, we can now show that there is a cone of directions τ

in which the solution is monotone near the origin.

Proposition 3.15. Let u be any solution to (3.3), and assume that (3.8) holds. Let

ur(x) = r−2u(rx). Then, there exist r◦ > 0 and e ∈ Sn−1 such that

∂τur◦ ≥ 0 in B1/2

for every τ ∈ Sn−1 satisfying τ · e ≥ 1
2 .

Proof. By Proposition 3.13, for any ε > 0 there exist e ∈ Sn−1 and r◦ > 0 such that∣∣ur◦(x)− 1
2(x · e)

2
+

∣∣ ≤ ε in B1 (3.9)

and ∣∣∂τur◦(x)− (x · e)+(τ · e)
∣∣ ≤ ε in B1 (3.10)

for all τ ∈ Sn−1.

We now want to use Lemma 3.14 to deduce that ∂τur◦ ≥ 0 if τ · e ≥ 1
2 . First, we

claim that

ur◦ > 0 in {x · e > C◦
√
ε},

ur◦ = 0 in {x · e < −C◦
√
ε}, (3.11)
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and therefore the free boundary ∂Ω = ∂{ur◦ > 0} is contained in the strip {|x · e| ≤
C◦

√
ε}, for some C◦ depending only on n (see Figure 3.4). To prove this, notice

that if x · e > C◦
√
ε then

ur◦ >
1

2
(C◦

√
ε)2 − ε > 0,

while if there was a free boundary point x◦ in {x ·e < −C◦ε} then by nondegeneracy

we would get

sup
BC◦

√
ε(x◦)

ur◦ ≥ c(C◦
√
ε)2 > 2ε,

a contradiction with (3.9).

Ω

0

2C◦
√
ε

Nδ ∩ Ω

∂Ω

Figure 3.4: The setting in which we use Lemma 3.14.

Therefore, we have

∂Ω ⊂ {|x · e| ≤ C◦
√
ε}.

Now, for each τ ∈ Sn−1 satisfying τ · e ≥ 1
2 we define

w := ∂τur◦ .

In order to use Lemma 3.14, we notice:

(a) w is bounded and harmonic in Ω ∩B1.

(b) w = 0 on ∂Ω ∩B1.

(c) Thanks to (3.10), if δ ≫
√
ε then w satisfies

w ≥ −ε in Nδ

and

w ≥ δ/4 > 0 in (Ω \Nδ) ∩B1.
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(We recall Nδ := {x ∈ B1 : dist(x, ∂Ω) < δ}.)
Indeed, to check the last inequality we use that, by (3.11), we have {x · e <

δ − C◦
√
ε} ∩ Ω ⊂ Nδ. Thus, by (3.10), we get that for all x ∈ (Ω \Nδ) ∩B1

w ≥ 1

2
(x · e)+ − ε ≥ 1

2
δ − 1

2
C◦

√
ε− ε ≥ 1

4
δ,

provided that δ ≫
√
ε.

Using (a)-(b)-(c), we deduce from Lemma 3.14 that

w ≥ 0 in B1/2.

Since we can do this for every τ ∈ Sn−1 with τ ·e ≥ 1
2 , the proposition is proved.

As a consequence of the previous proposition, we find:

Corollary 3.16. Let u be any solution to (3.3), and assume that (3.8) holds. Then,

there exists r◦ > 0 such that the free boundary ∂{ur◦ > 0} is Lipschitz in B1/2. In

particular, the free boundary of u, ∂{u > 0}, is Lipschitz in Br◦/2.

Proof. This follows from the fact that ∂τur◦ ≥ 0 in B1/2 for all τ ∈ Sn−1 with

τ · e ≥ 1
2 (by Proposition 3.15), as explained next.

Let x◦ ∈ B1/2 ∩ ∂{ur◦ > 0} be any free boundary point in B1/2, and let

Θ :=
{
τ ∈ Sn−1 : τ · e > 1

2

}
,

Σ1 :=
{
x ∈ B1/2 : x = x◦ − tτ, with τ ∈ Θ, t > 0

}
,

and

Σ2 :=
{
x ∈ B1/2 : x = x◦ + tτ, with τ ∈ Θ, t > 0

}
,

see Figure 3.5.

Σ1

Σ2

e

x◦
τ

Figure 3.5: Representation of Σ1 and Σ2.

We claim that {
ur◦ = 0 in Σ1,

ur◦ > 0 in Σ2.
(3.12)
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Indeed, since ur◦(x◦) = 0, it follows from the monotonicity property ∂τur◦ ≥ 0 —

and the nonnegativity of ur◦ — that ur◦(x◦ − tτ) = 0 for all t > 0 and τ ∈ Θ. In

particular, there cannot be any free boundary point in Σ1.

On the other hand, by the same argument, if ur◦(x1) = 0 for some x1 ∈ Σ2 then

we would have ur◦ = 0 in
{
x ∈ B1/2 : x = x1 − tτ, with τ ∈ Θ, t > 0

}
∋ x◦, and in

particular x◦ would not be a free boundary point. Thus, ur◦(x1) > 0 for all x1 ∈ Σ2,

and (3.12) is proved.

Finally, notice that (3.12) yields that the free boundary ∂{ur◦ > 0}∩B1/2 satisfies

both the interior and exterior cone condition, and thus it is Lipschitz.

Once we know that the free boundary is Lipschitz, we may assume without loss

of generality that e = en and that

∂{ur◦ > 0} ∩B1/2 = {xn = g(x′)} ∩B1/2

for a Lipschitz function g : Rn−1 → R. Here, x = (x′, xn), with x′ ∈ Rn−1 and

xn ∈ R.

Now, we want to prove that Lipschitz free boundaries are C1,α. A key ingredient

for this will be the following basic property of harmonic functions (see Figure 3.6

for a representation of the setting).

wi > 0
∆wi = 0

wi = 0

B1

Ω

Figure 3.6: Setting of the boundary Harnack.

Theorem 3.17 (Boundary Harnack). Let w1 and w2 be positive harmonic functions

in B1 ∩ Ω, where Ω ⊂ Rn is any Lipschitz domain.

Assume that w1 and w2 vanish on ∂Ω ∩ B1, and C
−1
◦ ≤ ∥wi∥L∞(B1/2) ≤ C◦ for

i = 1, 2. Then,
1

C
w2 ≤ w1 ≤ Cw2 in Ω ∩B1/2.

Moreover, ∥∥∥∥w1

w2

∥∥∥∥
C0,α(Ω∩B1/2)

≤ C
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for some small α > 0. The constants α and C depend only on n, C◦, and Ω.

We refer to [DS20] for the boundary Harnack for more general operators and to

[AS19, RT21] for the boundary Harnack for equations with a right hand side.

The boundary Harnack is a crucial tool in the study of free boundary problems,

and in particular in the obstacle problem. Here, we use it to prove that the free

boundary is C1,α for some small α > 0.

Proposition 3.18. Let u be any solution to (3.3), and assume that (3.8) holds.

Then, there exists r◦ > 0 such that the free boundary ∂{ur◦ > 0} is C1,α in B1/4,

for some small α > 0. In particular, the free boundary of u, ∂{u > 0}, is C1,α in

Br◦/4.

Proof. Let Ω = {ur◦ > 0}. By Corollary 3.16, if r◦ > 0 is small enough then

(possibly after a rotation) we have

Ω ∩B1/2 = {xn ≥ g(x′)} ∩B1/2

and the free boundary is given by

∂Ω ∩B1/2 = {xn = g(x′)} ∩B1/2,

where g is Lipschitz.

Let

w2 := ∂enur◦

and

w1 := ∂eiur◦ + ∂enur◦ , i = 1, ..., n− 1.

Since ∂τur◦ ≥ 0 in B1/2 for all τ ∈ Sn−1 with τ · en ≥ 1
2 , we have that w2 ≥ 0 in

B1/2 and w1 ≥ 0 in B1/2.

This is because ∂ei + ∂en = ∂ei+en =
√
2∂τ , with τ · en = 1/

√
2 > 1

2 . Notice that

we add the term ∂enur◦ in w1 in order to get a nonnegative function w2 ≥ 0.

Now since w1 and w2 are positive harmonic functions in Ω∩B1/2, and vanish on

∂Ω ∩B1/2, we can use the boundary Harnack, Theorem 3.17, to get∥∥∥∥w1

w2

∥∥∥∥
C0,α(Ω∩B1/4)

≤ C

for some small α > 0. Therefore, since w1/w2 = 1 + ∂eiur◦/∂enur◦ , we deduce∥∥∥∥ ∂eiur◦∂enur◦

∥∥∥∥
C0,α(Ω∩B1/4)

≤ C. (3.13)

Now, we claim that this implies that the free boundary is C1,α in B1/4. Indeed, if

ur◦(x) = t then the normal vector to the level set {ur◦ = t} is given by

νi(x) =
∂eiur◦
|∇ur◦ |

=
∂eiur◦/∂enur◦√

1 +
∑n−1

j=1

(
∂ejur◦/∂enur◦

)2 , i = 1, ..., n.
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This is a C0,α function by (3.13), and therefore we can take t → 0 to find that the

free boundary is C1,α (since the normal vector to the free boundary is given by a

C0,α function).

So far we have proved that(
{u = 0} has positive

density at the origin

)
=⇒

(
any blow-up is

u0 =
1
2(x · e)

2
+

)
=⇒

(
free boundary

is C1,α near 0

)
As a last step in this section, we will now prove that C1,α free boundaries are

actually C∞.

3.3.1 Higher regularity of the free boundary

We want to finally prove the smoothness of free boundaries near regular points.

Theorem 3.19 (Smoothness of the free boundary near regular points). Let u be any

solution to (3.3), and assume that (3.8) holds. Then, the free boundary ∂{u > 0} is

C∞ in a neighborhood of the origin.

For this, we need the following result.

Theorem 3.20 (Higher order boundary Harnack). Let Ω ⊂ Rn be any Ck,α domain,

with k ≥ 1 and α ∈ (0, 1). Let w1, w2 be two solutions of ∆wi = 0 in B1∩Ω, wi = 0

on ∂Ω ∩B1, with w2 > 0 in Ω.

Assume that C−1
◦ ≤ ∥wi∥L∞(B1/2) ≤ C◦. Then,∥∥∥∥w1

w2

∥∥∥∥
Ck,α(Ω∩B1/2)

≤ C,

where C depends only on n, k, α, C◦, and Ω.

We refer to [DS16] for the proof of such result.

Proof of Theorem 3.19. Let ur◦(x) = r−2
◦ u(r◦x). By Proposition 3.18, we know

that if r◦ > 0 is small enough then the free boundary ∂{ur◦ > 0} is C1,α in B1, and

(possibly after a rotation) ∂enur◦ > 0 in {ur◦ > 0} ∩ B1. Thus, using the higher

order boundary Harnack (Theorem 3.20) with w1 = ∂eiur◦ and w2 = ∂enur◦ , we find

that ∥∥∥∥ ∂eiur◦∂enur◦

∥∥∥∥
C1,α(Ω∩B1/2)

≤ C.

Actually, by a simple covering argument we find that∥∥∥∥ ∂eiur◦∂enur◦

∥∥∥∥
C1,α(Ω∩B1−δ)

≤ Cδ (3.14)

for any δ > 0.
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Now, as in the proof of Proposition 3.18, we notice that if ur◦(x) = t then the

normal vector to the level set {ur◦ = t} is given by

νi(x) =
∂eiur◦
|∇ur◦ |

=
∂eiur◦/∂enur◦√

1 +
∑n

j=1

(
∂ejur◦/∂enur◦

)2 , i = 1, ..., n.

By (3.14), this is a C1,α function in B1−δ for any δ > 0, and therefore we can take

t → 0 to find that the normal vector to the free boundary is C1,α inside B1. But

this means that the free boundary is actually C2,α.

Repeating now the same argument, and using that the free boundary is C2,α in

B1−δ for any δ > 0, we find that∥∥∥∥ ∂eiur◦∂enur◦

∥∥∥∥
C2,α(Ω∩B1−δ′)

≤ Cδ′ ,

which yields that the normal vector is C2,α and thus the free boundary is C3,α.

Iterating this argument, we find that the free boundary ∂{ur◦ > 0} is C∞ inside

B1, and hence ∂{u > 0} is C∞ in a neighborhood of the origin.

This completes the study of regular free boundary points. It remains to under-

stand what happens at points where the contact set has density zero.



Chapter 4

Singular points

We finally study the behavior of the free boundary at singular points, i.e., when

lim
r→0

∣∣{u = 0} ∩Br
∣∣

|Br|
= 0. (4.1)

For this, we first notice that, as a consequence of the results of the previous Section,

we get the following.

Proposition 4.1. Let u be any solution to (3.3). Then, we have the following

dichotomy:

(a) Either (3.8) holds and all blow-ups of u at 0 are of the form

u0(x) =
1

2
(x · e)2+,

for some e ∈ Sn−1.

(b) Or (4.1) holds and all blow-ups of u at 0 are of the form

u0(x) =
1

2
xTAx,

for some matrix A ≥ 0 with trA = 1.

Points of type (a) were studied in the previous Section; they are called regular

points and the free boundary is C∞ around them (in particular, the blow-up is

unique). Points of type (b) are those at which the contact set has zero density, and

are called singular points.

To prove the result, we need the following:

Lemma 4.2. Let u be any solution to (3.3), and assume that (4.1) holds. Then,

every blow-up of u at 0 satisfies |{u0 = 0}| = 0.

47
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Proof. Let u0 be a blow-up of u at 0, i.e., urk → u0 in C1
loc(Rn) along a sequence

rk → 0, where ur(x) = r−2u(rx).

Notice that the functions ur solve

∆ur = χ{ur>0} in B1,

in the sense thatˆ
B1

∇ur · ∇η dx =

ˆ
B1

χ{ur>0}η dx for all η ∈ C∞
c (B1). (4.2)

Moreover, by assumption (4.1), we have
∣∣{ur = 0} ∩ B1

∣∣ −→ 0, and thus taking

limits rk → 0 in (4.2) we deduce that ∆u0 = 1 in B1. Since we know that u0 is

convex, nonnegative, and homogeneous, this implies that |{u0 = 0}| = 0.

We can now give the:

Proof of Theorem 4.1. By the classification of blow-ups (Theorem 3.7), the possible

blow-ups can only have one of the two forms presented. If (3.8) holds for at least

one blow-up, thanks to the smoothness of the free boundary (by Proposition 3.18),

it holds for all blow-ups, and thus, by Corollary 3.12, u0(x) =
1
2(x · e)

2
+ (and in fact,

the smoothness of the free boundary yields uniqueness of the blow-up in this case).

If (4.1) holds, then by Lemma 4.2 the blow-up u0 must satisfy
∣∣{u0 = 0}

∣∣ = 0,

and thus we are in case (b) (see the proof of Theorem 3.7).

In the previous Section we proved that the free boundary is C∞ in a neighbor-

hood of any regular point. A natural question then is to understand better the

solution u near singular points.

One of the main results in this direction is the following.

Theorem 4.3 (Uniqueness of blow-ups at singular points). Let u be any solution

to (3.3), and assume that 0 is a singular free boundary point.

Then, there exists a homogeneous quadratic polynomial p2(x) = 1
2x

TAx, with

A ≥ 0 and ∆p2 = 1, such that

ur −→ p2 in C1
loc(Rn).

In particular, the blow-up of u at 0 is unique, and u(x) = p2(x) + o(|x|2).

To prove this, we need the following monotonicity formula due to Monneau.

Theorem 4.4 (Monneau’s monotonicity formula). Let u be any solution to (3.3),

and assume that 0 is a singular free boundary point.

Let q be any homogeneous quadratic polynomial with q ≥ 0, q(0) = 0, and ∆q = 1.

Then, the quantity

Mu,q(r) :=
1

rn+3

ˆ
∂Br

(u− q)2

is monotone in r, that is, d
drMu,q(r) ≥ 0.
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Proof. We sketch the argument here, and refer to [PSU12, Theorem 7.4] for more

details.

We first notice that

Mu,q(r) =

ˆ
∂B1

(u− q)2(rx)

r4
,

and hence a direct computation yields

d

dr
Mu,q(r) =

2

rn+4

ˆ
∂Br

(u− q) {x · ∇(u− q)− 2(u− q)} .

On the other hand, it turns out that

1

rn+3

ˆ
∂Br

(u− q) {x · ∇(u− q)− 2(u− q)} =Wu(r)−Wu(0
+)+

+
1

rn+2

ˆ
Br

(u− q)∆(u− q),

where Wu(r) (as defined in (3.4)) is monotone increasing in r > 0 thanks to Theo-

rem 3.2. Thus, we have

d

dr
Mu,q(r) ≥

2

rn+3

ˆ
Br

(u− q)∆(u− q).

But since ∆u = ∆q = 1 in {u > 0}, and (u − q)∆(u − q) = q ≥ 0 in {u = 0}, we
have

d

dr
Mu,q(r) ≥

2

rn+3

ˆ
Br∩{u=0}

q ≥ 0,

as wanted.

We can now give the:

Proof of Theorem 4.3. By Proposition 4.1 (and Proposition 3.6), we know that at

any singular point we have a subsequence rj → 0 along which urj → p in C1
loc(Rn),

where p is a 2-homogeneous quadratic polynomial satisfying p(0) = 0, p ≥ 0, and

∆p = 1. Thus, we can use Monneau’s monotonicity formula with such polynomial

p to find that

Mu,p(r) :=
1

rn+3

ˆ
∂Br

(u− p)2

is monotone increasing in r > 0. In particular, the limit limr→0Mu,p(r) :=Mu,p(0
+)

exists.

Now, recall that we have a sequence rj → 0 along which urj → p. In particular,

r−2
j {u(rjx)− p(rjx)} −→ 0 locally uniformly in Rn, i.e.,

1

r2j
∥u− p∥L∞(Brj )

−→ 0
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as rj → 0. This yields that

Mu,p(rj) ≤
1

rn+3
j

ˆ
∂Brj

∥u− p∥2L∞(Brj )
−→ 0

along the subsequence rj → 0, and therefore Mu,p(0
+) = 0.

Let us show that this implies the uniqueness of blow-ups. Indeed, if there was

another subsequence rℓ → 0 along which urℓ → q in C1
loc(Rn), for a 2-homogeneous

quadratic polynomial q, then we would repeat the argument above to find that

Mu,q(0
+) = 0. But then this yields, by homogeneity of p and q,ˆ

∂B1

(p− q)2 =
1

rn+3

ˆ
∂Br

(p− q)2 ≤ 2Mu,p(r) + 2Mu,q(r) −→ 0,

and hence ˆ
∂B1

(p− q)2 = 0.

This means that p = q, and thus the blow-up of u at 0 is unique.

Let us finally show that u(x) = p(x) + o(|x|2), i.e., r−2∥u − p∥L∞(Br) → 0 as

r → 0. Indeed, assume by contradiction that there is a subsequence rk → 0 along

which

r−2
k ∥u− p∥L∞(Brk

) ≥ c1 > 0.

Then, there would be a subsequence of rki along which urki → u0 in C1
loc(Rn), for a

certain blow-up u0 satisfying ∥u0 − p∥L∞(B1) ≥ c1 > 0. However, by uniqueness of

blow-ups it must be u0 = p, and hence we reach a contradiction.

Summarizing, we have proved the following result:

Theorem 4.5. Let u be any solution to (3.3). Then, we have the following di-

chotomy:

(a) Either all blow-ups of u at 0 are of the form

u0(x) =
1

2
(x · e)2+ for some e ∈ Sn−1,

and the free boundary is C∞ in a neighborhood of the origin.

(b) Or there is a homogeneous quadratic polynomial p, with p(0) = 0, p ≥ 0, and

∆p = 1, such that

∥u− p∥L∞(Br) = o(r2) as r → 0.

In particular, when this happens we have

lim
r→0

∣∣{u = 0} ∩Br
∣∣

|Br|
= 0.

The last question that remains to be answered is: How large can the set of

singular points be? This is the topic of the following section.
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4.1 On the size of the singular set

We finish this chapter with a discussion of more recent results (as well as some open

problems) about the set of singular points.

Recall that a free boundary point x◦ ∈ ∂{u > 0} is singular whenever

lim
r→0

∣∣{u = 0} ∩Br(x◦)
∣∣

|Br(x◦)|
= 0.

The main known result on the size of the singular set reads as follows.

Theorem 4.6 ([Caf98]). Let u be any solution to (3.3). Let Σ ⊂ B1 be the set of

singular points.

Then, Σ ∩B1/2 is locally contained in a C1 manifold of dimension n− 1.

This result is sharp, in the sense that it is not difficult to construct examples in

which the singular set is (n− 1)-dimensional; see [Sch77].

As explained below, such result essentially follows from the uniqueness of blow-

ups at singular points, established in the previous section.

Indeed, given any singular point x◦, let px◦ be the blow-up of u at x◦ (recall

that px◦ is a nonnegative 2-homogeneous polynomial). Let k be the dimension of

the set {px◦ = 0} — notice that this is a proper linear subspace of Rn, so that

k ∈ {0, ..., n− 1} — and define

Σk :=
{
x◦ ∈ Σ : dim({px◦ = 0}) = k

}
. (4.3)

Clearly, Σ =
⋃n−1
k=0 Σk.

The following result gives a more precise description of the singular set.

Proposition 4.7 ([Caf98]). Let u be any solution to (3.3). Let Σk ⊂ B1 be defined

by (4.3), k = 1, ..., n−1. Then, Σk is locally contained in a C1 manifold of dimension

k.

4.1.1 Generic regularity

In PDE problems in which singularities may appear, it is very natural and impor-

tant to understand whether these singularities appear “often”, or if instead “most”

solutions have no singularities.

In the context of the obstacle problem, the key question is to understand the

generic regularity of free boundaries. Explicit examples show that singular points

in the obstacle problem can form a very large set, of dimension n − 1 (as large as

the regular set). Still, singular points are expected to be rare (see [Sch74]):

Conjecture (Schaeffer, 1974): Generically, the weak solution of the obstacle prob-

lem is also a strong solution, in the sense that the free boundary is a C∞ manifold.
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In other words, the conjecture states that, generically, the free boundary has no

singular points.

The first result in this direction was established by Monneau in 2003, who proved

the following.

Theorem 4.8 ([Mon03]). Schaeffer’s conjecture holds in R2.

More precisely, Monneau considers a 1-parameter family of solutions uλ, with

λ ∈ (0, 1), such that {
∆uλ = χ{uλ>0} in Ω

uλ = λ on ∂Ω,

with λ > 0 on ∂Ω.

Then, the first step is to notice that not only each of the singular sets Σλ ⊂ Ω is

contained in a C1 manifold of dimension (n−1), but actually the union
⋃
λ∈(0,1)Σλ ⊂

Ω is still contained in an (n− 1)-dimensional manifold.

After that, we look at the free boundary as a set in Ω× (0, 1) ∋ (x, λ), and notice

that it can be written as a graph {λ = h(x)}, for some function h. A second key

step in the proof is to show that h is Lipschitz and, furthermore, it has zero gradient

at any singular point. This, combined with the coarea formula, yields that in R2 the

set of singular points is empty for almost every λ ∈ (0, 1), which implies Theorem

4.8.

Finally, the best known result in this direction was established very recently by

Figalli, Serra, and the second author.

Theorem 4.9 ([FRS20]). Schaeffer’s conjecture holds in R3 and R4.

The proof of this result is based on a new and very fine understanding of singular

points. For this, [FRS20] combines Geometric Measure Theory tools, PDE esti-

mates, several dimension reduction arguments, and even several new monotonicity

formulas.

It remains an open problem to decide whether or not Schaeffer’s conjecture holds

in dimensions n ≥ 5 or not.

In the next section we will give the proof of the Schaeffer’s conjecture in R2

(Theorem 4.8) based on the paper of Monneau, see [Mon03].
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Schaeffer’s conjecture

5.1 Monneau’s proof of the Schaeffer’s conjecture

From now on we are in the setting described in Theorem 4.8.

Let us introduce a new function:

h(x) := sup{λ ∈ [0,+∞) | uλ(x) = 0}.

We will prove the next two propositions in order to complete the proof of the The-

orem.

Proposition 5.1. The function h is Lipschitz-continuous on Ω

Proposition 5.2.
{h ≥ λ} = {uλ = 0}
{h = λ} = ∂{uλ = 0} (5.1)

Monneau improved Caffarelli’s Theorem 4.6 in the following sense.

Theorem 5.3 ([Mon03], A C1-submanifolds contains almost all singulararities).

Let

Sλ = the set of singular points of the coincidence set of uλ

and

S :=
⋃
λ>0

Sλ

then there exists a set E ⊂ S such that Hn−1(E) = 0 and S \ E is incuded in a C1

(n− 1)-dimensional submanifold of finite (n− 1)-volume.

Let us now recall the coarea formula.

Theorem 5.4 ([Fed69] Coarea Formula). Let A ⊂ Rm a set such that A \ B is

included in a C1 k-dimensional submanifold of finite k-volume and Hk(B) = 0. Let

a function

f : A→ R

53
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wich is Lipschitz on A. Then the ∇f is defined Hk almost everywhere on A and

ˆ
A

|∇f | dHk =

ˆ
R
Hk−1(f−1(y))dy

Proposition 5.5 (The function h has null gradient on the singular set).

lim sup
|X ′−X|→0

|h(X ′)− h(X)|
|X ′ −X|

= 0 ∀ X, X ′ ∈ S.

So from the theorems and propositions above, we can deduce that

0 =

ˆ
S

|∇h| dHn−1 =

ˆ +∞

0

Hn−2((h|S)−1(λ)) dλ

with

Sλ = (h|S)−1(λ),

so if n = 2 we get that H0(S) = 0, and this conclude the proof of the Schaeffer’s

conjecture in R2.

For the proof of Proposition 5.5 we need the following Theorem due to Caffarelli,

see [Caf98]

Definition 5.6 (Thickness of the Coincidence Set). We define the thickness of the

coincidence set {u = 0} in a ball Br(X0) by

δr(X0) =
1

r
m.d. ({u = 0} ∩Br(X0))

where the minimum diameter (m.d.) of {u = 0} ∩ Br(X0) is the infimum of the

distances between pairs of parallel hyperplanes whose strip determined by them

contains it.

Theorem 5.7 (Caffarelli’s Geometric Criterion). For each r > 0, there exists a

critical thickness σ0(r) with σ0(r) → 0 as r → 0, such that if

δr(X0) > σ0(r)

for some point X0 of the free boundary and for one radius r > 0, then the point X0

is regular. Moreover, this function σ0(r) only depends on bounds on ∥D2u∥L∞(Ω)

and d(X0, ∂Ω).

Proof of Proposition 5.5. If the proposition is false, then there exists δ > 0, and

sequences of singular points Xk, X
′
k ∈ S such that

h(X ′
k)− h(Xk)

|X ′
k −Xk|

≥ δ > 0 and |X ′
k −Xk| → 0.
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By equality (5.1) we have in particular

{uh(Xk) = 0} ⊃ X ′
k,

which (since h is Lipschitz) is improved in

{uh(Xk) = 0} ⊃ Brk(X
′
k) where rk =

δ|X ′
k −Xk|

Lip(h)
.

Let us introduce the following blow-up sequence:

uk(X) =
uh(Xk)(Xk + rkX)

r2k
.

In particular,

uk = 0 on the ball B1(Yk) with |Yk| =
Lip(h)

δ
.

From the geometric criterion (Theorem 5.7), this gives a contradiction with the fact

that 0 is a singular point for uk.

We will now prove Proposition 5.2. We first need the following two lemmas.

Lemma 5.8.

{uλ = 0} ⊂ {uλ′=0} if λ′ ≤ λ.

Proof. Apply the maximum principle to uλ − uλ′

Lemma 5.9. For every point X0 ∈ Ω, X0 ∈ ∂{uh(X0) = 0}

Proof. This lemma is a consequence of the fact that for λ1 = h(X0) and for every

s > 0:

uλ1+s > 0

and from the nondegeneracy we get

sup
Br(X0)

(uλ1+s − uλ1+s(X0)) ≥
r2

2n

By continuity of the map (X,λ) 7→ uλ(X), we get in s = 0:

sup
Br(X0)

uλ1
≥ r2

2n

wich proves the lemma.
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Proof of Proposition 5.2. From Lemma 5.9 and the continuity of the map (X,λ) 7→
uλ(X), we get

{uλ = 0} = {h ≥ λ}.

To prove that

∂{uλ = 0} = {h = λ}

we only need (from Lemma 5.10) to prove that

∂{uλ = 0} ⊂ {h = λ}

which is a consequence of

∂{uλ = 0} ⊂ {h ≥ λ}

and the fact that h is Lipschitz (Proposition 5.1) which avoids the values h > λ.

This ends the proof of Proposition 5.2.

Now we will prove that h is continuous, and after that, we prove that it is actually

Lipschitz, but we need continuity first.

Proposition 5.10. The function h is continuous.

Proof. We will here introduce a perturbation argument which will insure easily the

continuity of h. We will denote by η > 0 the parameter of the perturbation:

uηλ = (1− ηλ)uλ.

For η > 0 small enough, the maximum principle implies

uηλ ≤ uηλ′ on Ω if λ ≤ λ′.

Now let us assume that h is not continuous in X0 ∈ Ω. Then there exist δ > 0

and a sequence of points

Xk → X0 with |h(Xk)− h(X0)| ≥ δ > 0.

If h(Xk)− h(X0) ≤ −δ, then let

vk2 (X) := (1− ηh(Xk))
uh(Xk)(X0 + |Xk −X0|X)

|Xk −X0|2
≤

≤ vk1 (X) := (1− ηh(X0))
uh(X0)(X0 + |Xk −X0|X)

|Xk −X0|2
.

Because by Lemma 5.10 X0 is a point of the free boundary ∂{uh(X0) = 0}, by
Classification of blow-ups we know that the blow-up limit v01 satisfies with λ1 =

h(X0):

1

1− ηλ1
v01(X) =


1
2 tX ·Q1 ·X ≥ 0 with tr Q1 = 1

or
1
2(max(⟨X, ν1⟩, 0))2.
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The sequence v02 has also a blow-up limit:

v02 defined on Rn.

Then if we introduce a blow-down sequence with µ→ +∞:

v0µ2 (X) :=
v02(µX)

µ2
≤ v0µ1 (X) := v01(X).

Also the blow-down limit v∞2 satisfies with λ2 = limh(Xk) ≤ λ1 − δ:

1

1− ηλ2
v∞2 (X) =


1
2X ·Q2 ·X ≥ 0 with tr Q2 = 1

or
1
2(max(⟨X, ν2⟩, 0))2.

The fact that

1− ηλ2 > 1− ηλ1

gives a contradiction with the inequality

v∞2 ≤ v∞1 := v01 on Rn.

We get a similar contradiction with h(Xk)− h(X0) ≥ δ.

The last thing to prove in order to conclude the proof of the Schaeffer’s conjecture

in R2 is that h is Lipschitz.

Proposition 5.11. The function h is Lipschitz.

To prove that h is Lipschitz, we need to introduce the following family of functions

for δ > 0 and ε > 0:

vε(X) = sup
Y ∈Bεδ(X)

uλ−δ(Y )

which are subsolutions (as it will be proved below) to the obstacle problem (1.4)

on

Ω(−εδ) = {X ∈ Ω, d(X, ∂Ω) > εδ}.

For δ > 0 fixed, by a continuity method varying the parameter ε > 0, we will

prove that these subsolutions stay under the solution uλ until some critical value

εc > 0:

vε ≤ uλ on Ω(−εδ) for 0 ≤ ε ≤ εc :=
1

|∇uλ|L∞(Ω\Ω(−εδ))

. (5.2)

For ε = εc, this implies
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d({uλ = 0}, {uλ−δ > 0}) ≥ εcδ.

In particular, if X ′ ∈ ∂{uλ = 0} and X ∈ ∂{uλ−δ = 0}, then

0 ≤ h(X ′)− h(X)

|X ′ −X|
≤ 1

εc
.

Now as δ → 0, we get

0 ≤ lim sup
h(X ′)>h(X)
h(X ′)→λ
h(X)→λ

h(X ′)− h(X)

|X ′ −X|
≤ |∇uλ|L∞(∂Ω).

where we have used the continuity of the map (X,λ) 7→ ∇uλ(X). In particular,

we conclude that

Lip(h) ≤ sup
λ∈[0,+∞)

|∇uλ|L∞(∂Ω) = |∇u∞|L∞(∂Ω) < +∞,

where the function u∞ satisfies{
∆u∞ = 1 on Ω,

u∞ = 0 on ∂Ω.

By definition of vε, if X1 ∈ ∂Ω(−εδ), there exists X2 ∈ ∂Ω such that

|X2 −X1| = εδ and [X1, X2] ⊂ Ω \ Ω(−εδ).

Moreover,

vε(X1) = sup
Y ∈Bεδ(X1)

uλ−δ(Y )

≤ λ− δ

= uλ(X2)− δ

= uλ(X1)− δ + (uλ(X2)− uλ(X1))

≤ uλ(X1)− δ
(
1− ε|∇uλ|L∞(Ω\Ω(−εδ))

)
.

Consequently,

vε < uλ on ∂Ω(−εδ) while ε < εc =
1

|∇uλ|L∞(Ω\Ω(−εδ))

. (5.3)

Here the fact that vε is a subsolution for the obstacle problem means the following.

Lemma 5.12. The function vε satisfies
∆vε ≥ 1 on {vε > 0} ∩ Ω(−εδ)

vε ≥ 0

if vε(X0) = 0, then vε(X0 +X) ≤ CX2 with C = 1
2 |∇

2u|L∞(Ω).
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Now let us consider the open set where vε is bigger than uλ:

ω := {vε > uλ} ∩ Ω(−εδ).

We want to prove that ω = ∅ while ε < εc. Let us assume on the contrary that

ω ̸= ∅. Then from Lemma 5.12 and the maximum principle, we deduce that the

maximum

max
ω

(vε − uλ) > 0

is reached on

∂ω ∪ ((∂{uλ = 0}) ∩ ω).

But

∂ω ⊂
(
∂Ω(−εδ)

)
∪ {vε = uλ}

and from (5.3) we get

vε − uλ ≤ 0 on ∂ω while ε < εc.

We can resume what we have proved in the following.

Lemma 5.13.{
vε < uλ on ∂Ω(−εδ)

maxΩ(−εδ)
(vε − uλ) ≤ max∂{uλ=0} v

ε
while ε < εc.

We now apply a continuity method in three steps:

Step 1: Initialization. By the continuity of h (Proposition 5.10) and equality

(5.2), there exists an ε1 > 0 small enough (and in particular smaller than εc) such

that

d({uλ = 0}, {uλ−δ > 0}) ≥ ε1δ.

In particular, we get that

vε = 0 on ∂{uλ = 0} for ε ≤ ε1,

and from Lemma 5.13, we have

vε ≤ uλ on Ω(−εδ) for ε ≤ ε1.

Step 2: Continuation. Let

ε∗ = sup
{
ε′ ∈ [0, εc], v

ε ≤ uλ on Ω(−εδ) for all ε ≤ ε′
}
.

In particular,
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vε
∗
≤ uλ on Ω(−ε∗δ).

If ε∗ < εc, then from Lemma 4.13 and the maximum principle, we get

vε
∗
< uλ on

{
vε

∗
> 0
}
∩ Ω(−ε∗δ). (5.4)

On the other hand, we have{
vε

∗
= 0
}
⊃ {uλ = 0}.

We will prove that

∂{uλ = 0} ∩ ∂
{
vε

∗
> 0
}
̸= ∅. (5.5)

If not, we have

d
(
∂{uλ = 0},

{
vε

∗
> 0
})

= η > 0,

and then

vε
∗+s(X) = sup

Y ∈B(ε∗+s)δ(X)

uλ−δ(Y )

= sup
Y ∈Bsδ(X)

sup
Y ′∈Bε∗δ(Y )

uλ−δ(Y
′)

= sup
Y ∈Bsδ(X)

vε
∗
(Y ).

Then

vε
∗+s = 0 on ∂{uλ = 0} if s <

η

δ
and ε∗ + s < εc,

which by Lemma 5.13 would give a contradiction to the definition of ε∗.

Then (5.5) is true and there exists

X3 ∈ ∂{uλ = 0} ∩ ∂
{
vε

∗
> 0
}
.

Moreover, there exists

X4 ∈ ∂{uλ−δ = 0} such that |X4 −X3| = ε∗δ.

As a consequence,

vε
∗
> 0 on Bε∗δ(X4).

Using Lemma 5.13, we can resume the properties of uλ−vε
∗
on the ball Bε∗δ(X4)

by



5.1. MONNEAU’S PROOF OF THE SCHAEFFER’S CONJECTURE 61


∆(uλ − vε

∗
) ≤ 0 on Bε∗δ(X4)

uλ − vε
∗
> 0 on Bε∗δ(X4)

uλ(X3) = vε
∗
(X3) = 0 with X3 ∈ ∂Bε∗δ(X4).

The Hopf lemma implies

d

dn
(uλ − vε

∗
)(X3) > 0 with n =

X3 −X4

|X3 −X4|
.

This is in contradiction with the fact that the nonnegative functions uλ and vε
∗

satisfy {
∇uλ(X3) = 0 because uλ ∈ C1,1

∇vε∗(X3) = 0 because vε
∗
(X3 +X) ≤ CX2.

Step 3: Conclusion. As a consequence, we get

ε∗ = εc.

Proof of Lemma 5.12. This lemma is a straightforward consequence of the

following.

Lemma 5.14 ((T. Kato [K72], Variant of Kato’s Inequality)). Let two Lipschitz

functions ui for i = 1, 2, which satisfy ui ≥ 0 on ω, ∆ui ≥ 0 on ω, and

∆ui ≥ 1 on {ui > 0} ∩ ω. (5.6)

Then v = sup(u1, u2) satisfies

∆v ≥ 1 on {v > 0} ∩ ω.

And Lemma 5.14 can be proved using the original mollification argument of T.

Kato in [K72].
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