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Introduction

The obstacle problem is a classic problem in mathematical analysis and the cal-
culus of variations, with applications in various fields of science and engineering,
ranging from material theory to mathematical finance. Intuitively, the problem can
be described as the search for the optimal configuration of an elastic membrane
subject to a physical obstacle. More formally, it involves finding a function that
minimizes a certain energy functional while satisfying a set of constraints imposed
by the obstacle itself.

One of the most fascinating aspects of the obstacle problem is the nature of
the free boundary, which is the boundary between the region where the solution
touches the obstacle and the region where it remains free. The regularity of this
free boundary is crucial for understanding the fine structure of the solutions to the
problem.

In this thesis, we aim to explore the obstacle problem with a particular focus on
the regularity of the free boundary. After reviewing the classical theory of the obsta-
cle problem, we will focus on modern analytical techniques, such as the monotonicity
formulas methods and geometric analysis tools, to establish optimal regularity re-
sults.

In particular, in Chapter 2, we will introduce the classical formulation of the
obstacle problem and study the fundamental properties of the solutions. In Chapter
3, we will focus on the study of the free boundary and its regularity, with particular
attention to the regular points, while in Chapter 4, we will examine the singular
points. Finally, Chapter 5 discusses Schaeffer’s conjecture in two dimensions, along
with the details of Monneau’s proof.

The core material for this thesis, in addition to the articles cited in the bib-
liography, is based on the book ”Regularity Theory for Elliptic PDE” by Xavier
Fernédndez-Real and Xavier Ros-Oton.

il






Chapter 1

Preliminaries

We next give a quick review of some basic definitions about LP, Sobolev, and Hélder
spaces, and some results that will be used later in the thesis.

1.1 Sobolev and Holder spaces

LP spaces. Given 2 C R™ and 1 < p < oo, the space LP(2) is the set

LP(Q2) := {u measurable in ) :/ luPdx < oo}
Q

It is a Banach space, with the usual norm [|ul|»(q) := ([ |u[Pdz)'/P.
When p = oo, the space L*°(£2) is the set of bounded functions (up to sets of measure
zero), with the norm |[ul|p(q) 1= esssupgq |ul.

Theorem 1.1. If u € L'(Q) then for almost every x € Q we have

lim][ lu(x) — u(y)|dy = 0.
B, (x)

r—0

When this holds at a point x € ), we say that x is a Lebesque point of .

Here, and throughout the thesis, fQ denotes the average ﬁ fQ, where 2 C R™ is
any set of finite positive measure.

Corollary 1.2. Ifu € L}(Q), and

/Qu(m)v(m) de =0 for all ve CX(Q).

Then, u =0 a.e in Q.

Integration by parts A fundamental identity in the study of PDEs is the
following.
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Theorem 1.3 (Integration by parts). Assume Q C R™ is any bounded C' domain.
Then, for any u, v € CY(Q) we have

/(%uvdx:—/u@iv da:—l—/ uv v; dS, (1.1)
Q Q 0N

where v is the unit (outward) normal vector to 02, andi=1,...,n.

Notice that, as an immediate consequence, we find the divergence theorem, as
well as Green’s first identity:

/Vu-Vvdx:—/uAch—l—/ u@dS.
Q Q aq OV

The regularity requirements of Theorem 1.3 can be relaxed. Indeed the domain €2
need only to be Lipschitz, while only u, v € H'(Q) is necessary in (1.1) - where
H'(Q) is a Sobolev space, defined below.

Sobolev spaces. Given any domain 2 C R™ and 1 < p < oo, the Sobolev spaces
W1LP(Q) consist of all functions whose (weak) derivatives are in LP(), namely

Wh(Q) = {u e LP(Q) : due LP(Q)fori=1,...,n}.

We refer to the books [evans] [Bre| inserire bibliografia! for the definition of weak
derivatives and a detailed exposition on Sobolev spaces.

e (S1) The spaces W1P(Q) are complete.
e (S2) The inclusion W1P(Q) C LP(Q) is compact,

e (S3) The space H'(Q) := W12(Q) is a Hilbert space withe the scalar product

(u,v) () ::/uv+/Vu-Vv.
Q Q

e (S4) Any bounded sequence {uz} in the Hilbert space H!(£2) contains a weakly
convergent sequence {uy, }, that is, there exists u € H 1(Q) such that

(ug;,v) () = (U, 0) i) for all v e HY(Q). (1.2)
in addition, such u will satisfy
1) < h]rgg;f [k, | () (1.3)
and since H'(Q) is compactly embedded in L?(€2) one has

l[ullz2() = lim [|ug;||r2(q)- (1.4)
]_>OO
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e (S5) Let 2 be any bounded Lipschitz domain, and 1 < p < co. Then, there is
a continuous (and compact for p > 1) trace operator from W1P(Q) to LP(992).
For C° functions, such trace operator is simply u — uloq-

Because of this, for any function u € H'(Q) we will still denote by u|gq its
trace on 0f2.

e (S6) For 1 < p < co C®(R) functions are dense in W1P(Q). Moreover, if € is
bounded and Lipschitz, C°>°(€2) are dense in WhP(€).

e (S7) For 1 < p < oo, we define the space Wol’p(Q) as the closure of CZ°(Q) in
(W1P(Q). Similarly, we denote H} () := Wol’p(Q). When €2 is bounded and
Lipschitz, it is the space of functions v € W1P(Q) such that u|sn = 0.

e (S8) if u € WP(Q), 1 < p < 0o, then for any subdomain K CC 2 we have

u(x + h) — u(z)
1]

< C[|Vul| o)
Lr(K)

for all h € By, with § > 0 small enough. Conversely, if u € LP(Q2), 1 < p < o0,

and
u(x + h) —u(zx) <C
Id )
for every h € Bg, then u € WHP(Q) and [Vul|pp) < C. (This property fails
when p = 1.)

Theorem 1.4 (Sobolev inequality). If p < n, then

1/p* 1/p . -
wp de | <ol [ VpPde) o, —=-—-
R Rn p p n

for some constant C' depending only on n and p. In particular, we have a continuous
inclusion WHP(R™) c LP" (R™).

Notice that if p T n we have p* — oo. In the limit case p = n, however, it is not
true that W™ functins are bounded.

Theorem 1.5 (Morrey inequality). If p > n, then

1/p
SUPMSC / vuf |, a=1-1
xFY |3j - y| n p

for some constant C' depending only on n and p.

In particular, when p > n any function in W1P(Q) is continuous (in the sense
that it admits a continuous equivalent function).
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Theorem 1.6 (Poincaré inequality). . Let Q@ C R™ be a bounded Lipschitz domain,
and let p € [1,00). Then, for any u € WHP(Q) we have

/ lu — ug|P dr < ngp/ |VulP dz, ugq ::][u,

Q Q

/ lul? dx < CQ7P</ |VulP da:+/ u|5deO'>.
Q Q o0

The constants depend only on n, p and S2.

and

Holder spaces. Given a € (0,1), The Holder space C%%() is the set of con-

tinuous functions u € C'(2) such that the Holder semi-norm is finite,

The Holder norm is
[ullcoary = l1ullz= (@) + [D*u] con @y,
where
k
lullory =D 1D7ul| (.
j=1
Notice that this yields the inclusions
O sLip>ot>ct ... o 0™
We will write [|u|cra(q) instead of [lul|or.a(q)-

We state now one of the most basic theorem for the study of harmonic functions.
It gives a kind of "maximum principle in quantitative form”. We will write that
u € H' is harmonic, meaning in the weak sense. It is well known that as soon as a
function is harmonic, it is immediately C'*°.

Theorem 1.7 (Harnack’s inequality). Assumeu € H'(By) is a non-negative, harm-
nic function in By. Then the infimum and the supremum of uw are comparable in

Byjg. That is,

Au = in B )
_ — supu < C inf u
u = n B By By 2

for some constant C' depending only on n.



1.1. SOBOLEV AND HOLDER SPACES )

Proof. This can be proved by the mean value property. Alternatively, we can use
the Poisson kernel representation,

(2 = ¢ A= zPu(z)
(x) ”/aBl dz.

|z — 2|

Notice that, for any = € By, and 2z € 9By, we have 27" < |z — 2|" < (3/2)" and
3/4<1— |:,17]2 < 1. Thus, since u > 0 in By,

C’_l/ u(2)dz < wu(z) < C/ u(z)dz, forall x € By,
0B 0B

for some dimensional constant C'. In particular, for any x1, zg2 € By, we have
that u(z1) < C2u(xy). Taking the infimum for zo € By and the supremum for
x1 € By, we reach that supyjy < C'inf By )y, for some dimensional constant C, as
desired. ]

Remark 1.8. There is nothing special about By /3. We can obtain a similar inequality
in B,, with ¢ < 1, but the constant C' would depend on p as well. Indeed, repeating
the previous argument, one gets that if Au =0 and v > 0 in By, then

C
supu < ——— inf u, 1.5
WS T B 5

For some C' depending only ib n, and ¢ € (0, 1).

Lemma 1.9 (Hopf Lemma). Let Q C R™ be any domain satisfying the interior ball
condition. Let u € C(Q) be any positive harmonic function in QN Ba, with u > 0
on 02 N Bs.

Then, u > cod in QN By for some ¢, > 0, where d(x) = dist(z, 2°).

Proof. Since u is positive and continuous in 2 N Bg, we have that v > ¢; > 0 in
{d > po/2} N Bsy for some c1 > 0.

Let us consider the solution of Aw =0 in By, \ B, /o, with w = 0 on dB,, and
w = 1on dB, ;5. In particular, it is immediate to check that w > ca(po — |2[) in
By, for some ¢ > 0.

By using the function cjw(zo+z) as a subsolution in any ball B, (v5) C Q2N By,
we deduce that u(z) > ciw(xo +2) > ci1c2(po — |x —20|) > c1cad in By, (2,). Setting
co = c1c2 and using the previous inequality for every ball B, (z,) C N By /2, the
result follows. O






Chapter 2

The obstacle problem

We now focus our attention to on a third type of nonlinear elliptic PDE: a free
boundary problem. In this kind of problem we are no longer interested in the reg-
ularity of a solution u, but also in the study of an a priori unknown interphase I'
(the free boundary).

There is a wide variety of problems in applied sciences that can be described by
PDEs that exhibit free boundaries. Many of such problems can be written as vari-
ational inequalities, for which the solution is obtained by minimizing a constrained
energy functional. One of the most classical example is the obstacle problem.

Given a smooth function ¢, the obstacle problem is the following:

1
minimize 3 / |Vo|? dz among all functions v > ¢. (2.1)
Q

—Awv > 0 everywhere v > ¢ everywhere

N\

Av=0in {v > ¢}

Figure 2.1: The function v minimizes the Dirichlet energy among all functions with
the same boundary values situated above the obstacle.

The interpretation of such problem is clear: one looks for the least energy func-
tion v, but the set of admissible functions consists only of functions that are above
a certain ”obstacle” ¢.
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In the two-dimensional case, one can think of the solution v as a "membrane”
which is elastic and is constrained to be above ¢,(see Figure 2.1). The Euler-
Lagrange equation of the minimization problem is the following:

v q5 in
Av 0in Q (2.2)
Av = 0in the set {v > ¢},

IN IV

with the boundary condition v|yn = g.

Indeed, notice that if we denote F(v) = 3 Jo IVv|*dz, then we will have
F(v+en) > F(v) for every e >0, and n > 0,n € C°(1),

which yields Av > 0 in €. That is, we can perturb v with nonnegative functions
(en) and we always get admissible functions (v+¢n). However, due to the constraint
v > ¢, we cannot perturb v with negative functions in all of €2, but only in the set
{v > ¢}. This is why we get Av < 0 everywhere in 2, but Av = 0 only in {v > ¢}.

As we can see later, any minimizer of (2.1) is continuous, hence the set {v > ¢}
is open.)

Alternatively, we may consider u := v — ¢, and the problem is equivalent to

u 0in Q
Au fin Q (2.3)
Au = fin the set {u > 0},

VAR

where f = A¢.

Such solution u can be obtained as follows:
. 1 9 .
minimize §|Vu| + fu p dor  among all functions u > 0 (2.4)
Q

Indeed

1 1 1
—/yv<v—¢)|2dx=—/|wy2dx + —/\wy? — /Vu-Vcbd:c
2 Q 2 Q 2 Q Q

=Fv) + Flo) + /uAgb dv — / g? dz,
Q o oV

where F(¢) and the boundary term are constant, so the variational problems (2.1)
and (2.4) are equivalent. In other words, we can make the obstacle just zero, by
adding a right-hand side f. Here, the minimization is subject to the boundary con-
ditions ulpg = g := g — ¢.
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The free boundary. Let us take a closer look at the obstacle (2.3).

One of the most important features of such problems is that it has two unknowns:
the solution u, and the contact set {u = 0}. In other words, there are two regions
in €2: one in which v = 0; and one in which Au = f.

These regions are characterized by the minimization problem (2.4). Moreover, if we

denot
[':=0{u>0}NQ,

then this is called the free boundary.

The obstacle problem is a free boundary problem, as it involves an unknown interface
I' as part of the problem. More over is not difficult to see that the fact that u is
a nonnegative supersolution must imply Vu = 0 on I', that is , we will have that
u > 0 solves

Au = fin{u >0}

u = OonT
Vu = 0Oonl.

This is just an alternative way to write the Euler-Lagrange equation of the prob-
lem. In this way, the interface I" appears clearly, and we see that we have both
Dirichlet and Neumann conditions on TI'.

2.1 Basic properties of Solutions I

We proceed now to study the basic properties of solutions to the obstacle problem:
existence of solutions, optimal regularity, and nondegeneracy.

Existence of solutions. Existence and uniqueness of solutions follows easily
from the fact that the functional fQ |Vv|2dz is convex, and that we want to minimize
it in the closed convex set {v € H'(Q) : v > ¢}

Proposition 2.1 (Existence and uniqueness.). Let Q C R" be any bounded Lipschitz
domain, abd let g : 0Q — R and ¢ € H'(Q) be such that

C={weHQ) : w>¢inQ, woo=g}+#2.

Thene, there exists a unique minimizer of fQ \Vou|? dx among all functions v €
HY(Q) satisfying v > ¢ in Q and v|po = g.

Proof. Let
1
I:= inf{§/|V’w2 dr : we H(Q), wlpn =g, w>¢in Q},
Q

that is, the infimum value of F(w) = % fQ |Vw|? dz among all admissible functions
w. Let us take a sequence of functions {uy} such that



10 CHAPTER 2. THE OBSTACLE PROBLEM
o uy € H(Q).
e uilsn = g and ug > ¢ in Q.
o F(ug) — I as k — oc.

Thanks to Poincaré inequality, the sequence {u;} is uniformly bounded in H'(Q),
and therefore there exists a subsequence {uy, } that converges to a certain function v
strongly in L? and weakly in H!(£2). Moreover, by compactness of the trace operator
we will have that ug, oo — v]so in L%(09), so that v|pn = ¢g. Furthermore, such
function v will satisfy F(v) < liminf; o F(ug,), and therefore it will be a minimizer
of the energy functional. Since uy;, > ¢ in Q and uy;, — v in L%*(Q), we have v > ¢ in
Q2. Thus, we have proved the existence of a minimizer v. Uniqueness follows directly
from the strict convexity of the functional. Indeed if v is a solution for the obstacle
problem then for every u € H}(§2) we have

1
Flo+u) = 5/ V(v +u)? do
Q
1

1
=—/|VU|2da:+/VU-Vudx—|——/|Vu|2 dx
2 Q Q 2 Q

1
=F(v)+0+ 5/ \Vul? dz > F(u),
9)

with strict inequality if u # 0. Thus, v is unique.

Now we prove that any minimizer is actually continuous.

Lemma 2.2. Let Q@ C R"™ be any bounded Lipschitz domain, ¢ € C*(Q), and
v € HY(Q) be any minimizer of (2.1) subject to the boundary conditions v|gn = g.
Then, —Av > 0 in 2.

Proof. Let
1
F(v) = —/ Vo|? da.
2 Jo

Then, since v minimize F among all functions above the obstacle ¢ with fixed
boundary conditions on 02, we have that

F(v+en) > F(v) foreverye>0andn>0, ne C(Q).
This yields
2
5/V’U-V7’]dl‘—|—%/ IVn|? dz >0 for every € > 0and n >0, € C(Q)
Q Q

and thus
/ Vu-Vn>0 foreveryn>0, neCX(Q).
Q

This means that —Av > 0 in Q in the weak sense, as desired. O
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From here, by showing first that {v > ¢} is open, we obtain the Euler-Lagrange
equations for the functional:

Proposition 2.3. Let Q@ C R" be any Lipschitz domain, ¢ € C(QQ), and v €
HY(Q) be any minimizer of (2.1) subject to the boundary conditions v|gq = g. Then,
v e C(Q) and satisfies

v ¢ in §2
Av 0in Q (2.5)
Av = 0in{v>¢}NAQ,

IN IV

Proof. By construction, we already know that v > ¢ in Q and —Av > 0 in €2, i.e, v
is weakly superharmonic. Up to replacing v in a set of measure zero, we may also
assume that v is lower semi-continuous. Thusm we only need to prove that Av =0
in {v > ¢} N Q and that v is, in fact, continuous.

In order to do that, first we prove that {v > ¢} NQ is open. Let 29 € {v > ¢} NQ

be such that v(zg) —¢(z9) > g9 > 0. By lower semi-continuity of v and by continuity
of ¢, there exists § > 0 such that v(x) — ¢(x) > eo/2 for all x € Bs(xg), hence
Bs(zg) C {v > ¢}. Hence {v > ¢} N is open since zp was arbitrary. This
implies also that Av = 0 in {v > ¢} N Q. Indeed, for any zg € {v > ¢} and
n € CX(Bs(xp)) with |n| < 1, we have v £ en > ¢ in Q for all |¢] < g¢/2, and
therefore it is an admissible competitor to the minimization problem. Thus, we
have F(v +en) > F(v) for all |e| < g¢, and differentiating in ¢ we deduce that v is
harmonic in {v > ¢} N Q.
Finally we now show that v is continuous. By regularity of harmonic function we
already know that v is continuous in {v > ¢} N Q. Let us show that v is continuous
in {v=0¢}NQ Let yp € {v =0¢}NQ, and let us argue by contradiction. That
is, since v is lower semi-continuous, let us assume that there is a sequence y, — Yo
such that v(yg) — v(yo) + €0 = ¢(yo) + o for some g9 > 0. Since ¢ is continuous,
we may assume also that yi € {v > ¢}. Let us denote by z; the projection of yi
towards {v = ¢}, so 0 := |z — yo| < 2|yr — wo| 4 0 and v(zx) — v(yo) = é(vo).
Now, since v is superharmonic it is true that

T ][ v(y) dy  is monotone non-increasing for r € (0, dist(x, 012)),
B (x)

thus using this fact

v(zg) 2][ v = (1—2_”)][ v—|—2_”][ v=1+Is.
Bas,, (y) Bas,, (yr)\Bs,, (yx) Bs,, (yk)

Observe that, for the first term, since v is lower semi-continuous and d; | 0, we
can assume that, for & large enough, v > ¢(yo) — 27 "eg in Bss,, so that [} >
(1—-27")[¢(yo) —27"€p]. On the other hand, since v is harmonic in B, (yx), we have
by mean value property that Io = 27" (y;). Combining everything, we get

v(zk) > (1= 27")[p(yo) — 2 "e0] + 2 "0(yx) — d(yo) +2 "<
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which contradicts the fact that we had v(z) — v(yo) = ¢(yo). Hence, v is continuous
in €.
[l

Optimal regularity of solutions. From now on, we will actually localize the
problem and study it in a ball:

v ¢ in B

Av 0in By (2.6)
Av = 0in {v > ¢} N By.

2
<

We want to answer the following question:
What is the optimal regularity of solutions?

Notice that in the set {v > ¢} the solution is harmonic, i.e. Av = 0, while in the
interior of {v = ¢} we have Av = A¢. Thus, since A¢ is in general not zero, Av
is discontinuous across the free boundary 9{v > ¢} in general. In particular, v ¢ C?.

We will prove that any minimizer of (2.1) is actually C1'!, which gives the answer
to the previous question.

Theorem 2.4 (Optimal regularity). Let ¢ € C°°(By), and v be any solution to
(2.6). Thenv e CH in By o, with the estimate

[ollcras,,0) < C(lollzsy) + 10l cra(s,))-
The constant C' depends only on n.

To prove this we need the following lemma.

Lemma 2.5. Let ¢ € C*°(B1), and v be any solution to (2.6). Let xo € By be
any point on {v = ¢}. Then, for any r € (0, %1) we have

0 < sup (v - qb) < CT’Q,
BT(ZE())

with C' depending only on n and ||¢|c11(p,)-

Proof. Without loss of generality we can assume ||¢||cr1(p,) < 1.

Let I(z) == ¢(z0) + Vé(x0) - (x — m0) be the linear part of ¢ at zg. Let r € (0, 7).
Then by C1! regularity of ¢, in B,(z¢) we have

l(a) = r* < ¢(a) < v(2),
We want to show that, in the bakk B, (x¢) we have

v(z) < I(z) + Cr?
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For this, consider

w(z) = v(z) — [I(x) —r2.

This function w satisfies w > 0 in By (xg), and —Aw = —Av > 0 in By, (xo).

Let us split w into
w = W + wa,

with

wy = 0 on dB,(z9).

Aw; =0in By(xo) 1 —Awy > 01in By(xg)
an
wp = w on 0B, (xp)

Notice that

0<w <wand 0 < wy <w.
We have that
2] 2

wi(xg) < w(zo) = v(xo) — [{(z0) — 1] =1~

and by the Harnack inequality we get
2
w1l oo (B, a(20) < COT°

For ws, notice that Awy = Awv, and in particular Awy = 0 in {v > ¢}. This means
that wy attains its maximum on {v = ¢}. But in the set {v = ¢} we have

wy <w=¢— [l —r? < COr?.
and therefore we deduce that
lwall L (5, (z0)) < C°.

Combining the bounds for wy and wa, we get |[w|| (B, (z,)) < Cr?. Translating this
into v, and using that [[¢[[c11(p,) < 1, we find v — ¢ < Cr? in B, j2(z0). O

Therefore, we proved that:
At every free boundary point xg, v separetes from ¢ at most quadratically.
We will see that this implies the C1! regularity.

Proof of Theorem 2.4. Dividing v by a constant if necessary, we may assume
that [|v]|pe(p,) + |#llcri(,) < 1. We already know that v € C° in the set {v > ¢}
(since v is harmonic), and also in the interior of the set {v = ¢}, (since ¢ is C™).
Moreover, on the interface I' = 9{v > ¢} we have proved the quadratic growth
SUPR, (z0)(V — @) < Cr?. Let us prove that this yields the C*! bound we want. Let
r1 € {v > ¢} N By/9, and let zp € I' be the closest free boundary point. Denote
p = |x1 — xo|. Then, we have Av = 0 in B,(z1)(mettere figura), and thus we have
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also A(v —[) = 0, where [ is the linear part of ¢ at zy.

By estimates for harmonic functions, we find

R Q

ID?0[| L (B, a(@r)) = 1D* (0 = Dl /8, 200) < 510 = Uz /(8,0m)-

But by the growth proved in the previous Lemma, we have ||v — || 1o (B, () < Cp?,

which yields
¢

ID?0] (5 < —pt =0

p/2(71))

)

In particular, ||[D?v(z1)|| < C. We can do this for all 21 € {v > ¢} N By,
and on 0{v > ¢} we have quadratic growth by Lemma 2.5, hence it follows that
[v]lcras,,,) < C, as wanted. O

Nondegeneracy. We now want to prove that, at all free boundaries points, v
separates from ¢ at least quadratically.

That is, we want

0<cr?< sup (v — qb) < Cr?, (2.7)
BT(Io)

for all free boundary points 29 € 9{v > ¢}.
Remark 2.6. Since —Av > 0 everywhere, its is clear that if xo € 0{v > ¢} is a

free boundary point, then necessarily —Ap(xg) > 0, since v touches ¢ from above at
xo.

Proposition 2.7 (Nondegeneracy). Let ¢ € C°(By), and v be any solution to
(2.6). Assume that ¢ satisfies —A¢p > co > 0 in By. Then, for every free boundary
point Xo € {v > ¢} N By, we have

1
0<er?< sup (v—¢) <Cr?  forallr e (0,-),
B, (x0) 4

with a constant ¢ > 0 depending only on n and cg.

Proof. Let 1 € {v > ¢} be any point close to x¢ (we will then let 1 — x¢ at the
end of the proof). Consider the funtion

— C—O]a: — x|

w(z) = v(z) - o(x) - 22

Then, in {v > ¢} we have
Aw=Av—A¢p—cy=—-A¢p—cy >0

and hence —Aw < 0 in {v > ¢} N By(z1). Moreover, w(xy) > 0.
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By the maximum principle, w attains a positive maximum on d({v > ¢}NB,(x1)).
But on the free boundary d{v > ¢} we clearly have w < 0. Therefore, there is a
point on 0B, (z1) at which w > 0. In other words,

0< sup w= sup (v—¢)— —r
OB, (z1) OB, (z1) 2n

0
Summary of basic properties. Let v be any solution to the obstacle problem

v ¢ in By
Av 0in B
Av = 0in {v > ¢} N By.

>
<

Then, we have:

e Optimal regularity: ||v|[c11(p, ,, (10] oo () + Dl cra(ay)

e Nondegeneracy: if —A¢ > c¢g > 0, then

1
0<er?> sup (v—¢) <Cr? forallr e (0,=)
B, (z0) 2

at all free boundary points xg € d{v > ¢} N By s

e Equivalence with zero obstacle: The problem is equivalent to

u > 0in B
Au < fin By
Au = fin{u> 0}NB;.

where f = —A¢p > ¢g > 0.

We will next provide an alternative approach to the optimal regularity.

2.2 Basic properties of Solutions I1

We proceed now to study the basic properties of solutions v > 0 to the obstacle
problem (2.4).

Throughout this section we will always assume
f>0 in Q.

We can prove the existence of solutions with the same method used in the previous
section.
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Proposition 2.8 (Existence and uniqueness). Let Q C R" be any bounded Lipschitz
domain, and let g : 92 — R be such that

C:{uEHl(Q) u>0in Q, u|aQ:g}7é®

Then, for any f € L*(Q) there exists a unique minimizer of

1
—/|Vu|2 d:v+/fud:):
2 Q Q

among all functions u € HY(Q) satisfying u > 0 in Q and u|po = g.

Proof. Let
1
I::inf{§/|Vw|2dm+/fw s we HYQ), wlpn =g, w>0in Q},
Q Q

that is, the infimum value of F(w) = %fQ [Vw|? dz + [, fw among all admissible
functions w. Notice that, by Hélder’s inequality, F(w) < 400 if w € H(Q).

We take again a sequence of functions {v;} such that vy € H'(Q), viloq = g, vp >0
in Q, and F(v;) — I as k — oo. By Poincaré inequality, Holder’s inequality, and
the fact that F(v;) < I+ 1, for k large enough

1
o7 @) SC(/ |Vvk|2+/ 92) §C<I+1+/ \ka|+§/ 92>

1
< C<I + 1+ 2@ llvkll @) + 5/ 92)-
20

In particular, [[vg|/f1 () < C for some constant C' depending only on n, Q, g, f,
and [. Hence, a subsequence vy, converges to a certain function v strongly in LQ(Q)
and weakly in H'(Q). By compactness of the trace operator vk, oo — v]an = g in
L*(2). Furthermore, v satisfies F(v) < liminfj_o(vg,), and therefore it will be a
minimizer of the energy functional. Since vg, > 0 in  and vy, — v in L?(Q), we
have v > 0 in €. Thus, there is a minimizer v.

The uniqueness of the minimizer follows frome the stric convexity of the functional
F. O

Furthermore, we have the following equivalence. (Recall that we denote ut =

max{u,0}, and v~ = max{—u, 0}, so that u = u™ —u™).

Proposition 2.9. Let Q C R"™ be any bounded Lipschitz domain, and let g : 02 — R
be such that
C:{UEHI(Q):UZOinQ, u|aQ:g}7é@.

Then, the following are equivalent.
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(i) w minimizes %fg |Vul? + fQ fu among all functions satisfying u > 0 in € and
ulgn = g
(11) u minimizes %fg |Vul? + fQ fu™ among all functions satisfying u|pg = g.
Proof. The two functionals coincide whenever v > 0. Thus, the only key point is
to prove that the minimizer in (ii) must be nonnegative, i.e., u = u™. (Notice that
C # & implies that g > 0 on €2.) To show this, recall that the positive part of any

H' function is still in H', and moreover |Vu|? = |[Vu™|? + |[Vu~|?. Thus, we have
that (recall that f > 0 in Q)

1 1
—/ |Vu+|2+/fu+§—/ |vu|2+/fu+,
2 Q Q 2 Q Q

with strict inequality unless v = u™. This means that any minimizer u of the
functional in (ii) must be nonnegative, and thus we are done. ]

Let us next prove that any minimizer of (2.4) is actually a solution to (mettere
equazione) below.

We recall that we are always assuming that obstacles are as smooth as necessary,
p € C*°(Q), and therefore we assume here that f € C°°(2) as well.

Proposition 2.10. Let Q2 C R™ be any bounded Lipschitz domain, f € C*°(Q2), and
u € HY(Q) be any minimizer of (2.4) subject to the boundary conditions ulgn = g.
Then, u solves

Au= fxpusoy n (2.8)

m the weak sense.

Proof. Notice that, by Proposition 2.9, u is actually a minimizer of

]:(u):%/Q|Vu|2+/qu+

subject to the boundary conditions u|gn = g.
Thus, for any n € H}(£2) and £ > 0 we have

F(u+en) > Fl(u).

In particular, we obtain

_ + _ ,,+
0 < lim 214 F ) f(”):/w-vmhm/f(““”) v
EJ/O 3 0O EJ/O 0O g

Notice that

lim (ut+ent —ut [ n in {u>0}
| nT in {u=0},
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so that we have

/VU'V%L/fﬁX{u>o}+/fn+X{u:o} >0 forall ne Hy(Q).
0 0 0

Assume first that n > 0, so that

/Vu-Vn+/fT]20 for all n € HY(Q), n>0,
Q Q

which implies that Au < f in the weak sense. On the other hand, if n < 0, then

/W~Vn+/f?7><{u>0}20 forall 1€ Hy(Q), 1<0,
Q Q

which implies that Au > fx,~0} in the weak sense. In all (recall that f > 0),
fXus0y SAu< f in Q.

(In particular, notice that Au = f in {u > 0}.) Now, since f is smooth, this
implies that Au € L{® (Q). By Proposition ?? we deduce that u € C17¢ for every
e > 0. Moreover, since Au € L (Q) we have Au € L2 (Q) and by Calderén-
Zygmund estimates we have u € VVI?)CQ(Q) Thus, Au = 0 almost everywhere in the
level set {u = 0} and we have

Au = fXus0p ae in Q.

From here we deduce that Au = fx,~0y in {2 in the weak sense.
O

Notice that in the previous Section, when dealing with minimizers v of (2.1), it
was not easy to prove that v is continuous. Here, instead, thanks to Proposition 2.4
we simply used Schauder-type estimates for the Laplacian to directly deduce that u
is C1=¢ which is the almost-optimal regularity of solutions.

Alternatively we could prove the regularity in a different way as shown below.
For the sake of simlicity we assume f = 1.

Let Dy € R™ be a bounded open set with smooth boundary. Note that, by a
standard concentration-compactness, there is a solution V' € H'(R™) of the auxilary
problem

1
min{/ <§]VU\2+U> dr : ve HY(R™) ;v =1on Dy, UEOOHR”} (2.9)

We are going to prove that the set Q = {V > 0} is open, and that V' is continuous.

Remark 2.11 (Truncation). We note that any solution V to (2.9) automatically
satisfies V < 1.
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Remark 2.12 (Radial solutions). Suppose that Dy C R™ is a ball of radius rg. Then
the minimizer V is radially symmetric and has compact support. In fact the radial
symmetry V(z) = V(|z|) = V(r) follows by a Schwartz symmetrization. Thus V'
satisfies
V4 nlyy =1 on (rg,00)N{V >0},
0<V<1,V(g) =1, V' <O0.

Multiplying both sides by V'’ we get
1 " n—-1
S VPR + =R = - o),
and so taking f(r) = |[V/(r)|?, we get
fir) < =23/f(r) on  (ro,00) N{V >0},

and so
V/(r)| =/ f(r) <C =,
for some constant C' > 0, which gives the compactness of the support V.

Remark 2.13 (Comparison). Suppose that Qg C € are two given measurable sets
and that the functions Vj;, for ¢ = 0,1 are minimizers respectively of

1
min{/ <§\Vv|2+v> dr : ve HY(R") ,u=1o0n;, v>0on R”}. (2.10)

Then V; > V).

Remark 2.14 (Compact support). Suppose that Vj is a solution of (2.9) for a given
bounded measurable Dy C R™. Then, Vj has compact support.

Remark 2.15 (Subharmonicity). . Suppose that V' is a minimizer of (2.9). Then, V'
is subharmonic on the open set R™ \ Dy. Let u € H'(R") be such that V' > u and
u—V € HY{(R™\ Dy). Then

/ \Vu|? dz > \Vut|? dz > / IVVI? +2(V —u") do > / IVV|? d.
n Rn n n

Remark 2.16 (Superharmonicity). Suppose that V' is a minimizer of (2.9). Then
AV <1 on R™ Let ¢ € H'(R™) N LY(R™) be non-negative. Then for every £ > 0

1 ) |
— dx > —d
/n (2|V(V—I—€g0)| —I—V—Fetp) x_/Rn2|VV|2+V T,

/ VV-Vgpdx—l—/ wdr > 0.

which gives
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Remark 2.17 (Continuity). Since V € H'(R") satisfies
0<AV <1, on R"\ Dy,

it is continuous on R™ \ Dy.

Remark 2.18 (Diameter). Since AV < 1, for every zg € R™ such that dist(zg, Do) >
v 2n, we have that
a2
Vi) < 2wl

2n
and so V' =0 on the set {x € R" : dist(x, Dg) > v2n}.

Remark 2.19 (Inner ball condition). If we suppose that Dy satisfies the inner ball
condition for a radius rg, then, by the comparison principle, we have that dist Dy, {V =
0} > crp for some dimensional constant c.

Remark 2.20 (Behaviour of V' near the free boundary 0{V > 0}). Let zo € 0{V >
0}, 0 < r < dist(Dg,{V = 0}) and hy € B,(xg) be the solution of

Ah, =0 in By(xg), hy=V on 0B.(x).
Then, we have hy >V and —A(hy — V) <1 in B, (xg), which gives that

72

][ hy dx = hy(zg) < o
B (o)

For each y € B, j5(o) we have

S

2n—1r2

Vy) < hy(y) :][ hy dx < 2”][ hy dx <
Brya(y) By (xo) "

Remark 2.21 (Behaviour of VV near the free boundary 0{V' > 0}). . Consider the
function ¢ : [0,1] — R defined as
1- g, for r€0,1/2]
¢(T) = (1“*1)2
2, for e [1/2,1].
We note that the funciton ®(z) := ¢(|z|) satisfies V& = 0 on 0B and

n—1 n—1

A@(l‘) = O + XBl\Bl/2> :

Let o € 0{V > 0}. Without loss of generality we can suppos z¢p = 0. Let
®,(z) :=r?®(%) and consider the test function V&, € Hj({V > 0} N B,).

—/ Vo, d:v—/ YV - V(V,) dx
Br B'r

1
:/ vV 2, dx~|——/ (V) .V, dr
B, 2 /B,

1
:/ IVV|?®, dx——/ V2A®D, dz.
B, 2 B,

” Org = —NXB,,, T (n —
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Thus, we have

2 2n+3

2
L wvPdr <) viar < s
on+3 By)s 2 B n

and so
3n+6

2

!f IVV|? dx <
B'r/2

Remark 2.22 (V € CY(R"\ Dy)). Each component V; = gTV of the gradient VV is
an harmonic function in {V > 0} \ Dy. Moreover, from the last inequality we have
Vi(z) — 0 as dist(z, {V = 0}) — 0, which gives that V; is continuous on R™ \ Dy.

Remark 2.23 (Nondegeneracy of V). Let z9 € {V > 0} \ Dy. The function

|z — 0)?
Ulx)=V(z) - ——
(@) = V() - 200,
is harmonic in {V > 0} \ Do. Then, by the maximum principle
7“2
V(o) < sup V(z) = o
ze{V>0}NdB, (o) 2n

Since the same estimate holds for every zo € {V > 0} \ Dy, we get that it holds also
for zy € 0{V > 0}.

Optimal regularity of solutions
Thanks to the previous results, we know that any minimizer is continuous and solves
(2.8).

From now on, we will localize the problem and study it in a ball:

{ u > 0 in By (2.11)

Au = fX{u>O} in Bl.
Our next goal is to answer the following question:

Question: What is the optimal regularity of solutions?

First, a few important considerations. Notice that in the set {u > 0} we have
Au = f, while in the interior of {u = 0} we have Au = 0 (since u = 0 there).

Thus, since f is in general not zero, Au is discontinuous across the free boundary
O{u > 0} in general. In particular, u ¢ C2.

We will now prove that any minimizer of (2.4) is actually C™!, which gives the:

Answer: u e CH1 (second derivatives are bounded but not continuous)

The precise statement and proof are given next.
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Theorem 2.24 (Optimal regularity). Let f € C°°(By), and let u be any solution
to (2.11). Then, u is C11 inside By 9, with the estimate

||UHCL1(B1/2) < C(HUHLw(Bl) + ||f||Lip(B1)>-
The constant C' depends only on n.
To prove this, the main step is the following.

Lemma 2.25. Let u be any solution to (2.11). Let x5 € Byjp be any point on
{u=0}. Then, for any r € (0,%) we have

0< sup u< C"rz,
Br(‘ro)

with C" depending only on n and || f||Le(p,)-

Proof. We have that Au = fx,~01 in B1, with fxg,s0y € L>(B1). Thus, since
u > 0, we can use the Harnack inequality for the equation Au = fx (>0 in By (xo),
to find

sup u S C ( lnf u -+ T2||fX{u>0}HLOO(B%”(xO))) ’
Br(xo) B, l‘o)

Since u > 0 and u(z,) = 0, this yields supp, (,,)u < C||f||Loo(Bl)r2, as wanted. [
We have proved the following:
At every free boundary point zo, u grows (at most) quadratically.
We will see that this implies the C! regularity.

Proof of Theorem 2.24. Dividing u by a constant if necessary, we may assume that
[ull oo (y) + 1 f [|Lip(r) < 1-

We already know that v € C*° in the set {u > 0} (since Au = f € C* there),
and also inside the set {u = 0} (since u = 0 there). Moreover, on the interface
I' = 0{u > 0} we have proved the quadratic growth sup By(xo) U < Cr?. Let us prove
that this yields the C1'! bound we want.

Let 71 € {u > 0} N Byy, and let x5 € I' be the closest free boundary point.
Denote p = |x1 — #o|. Then, we have Au = f in B,(x1).

By Schauder estimates, we find

1
1D%ul| Loe(B, a1y < C (;HUIILoo(BP(m)) + ||f||Lip(Bl)> :

But by the growth proved in the previous Lemma, we have ||ul[ze(p,(z,)) < Cp?,
which yields

|Dul 1 <C.

p/2(71))
In particular,

|D?u(z1)] < C.
We can do this for each z1 € {u > 0} N By s, and therefore |[ul|ci(p, ,,) < C, as
wanted. ]
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Also, notice that as a consequence of the previous results, we have that as soon
as the solution to (2.11) has non-empty contact set, then its C*! norm is universally
bounded.

Corollary 2.26. Let u be any solution to (2.11), and let us assume that u(0) = 0
and || fllLipB,) < 1. Then,

lullcrap, ) < C
for some C' depending only on n.

Proof. 1t is an immediate consequence of Theorem 2.24 combined with Lemma 2.25.
O

Nondegeneracy. For completeness, we now state the nondegeneracy in this
setting. That is, at all free boundary points, u grows at least quadratically (we
already know at most quadratically). We want:

0<er?< sup u < Cr?
Br(zo)

for all free boundary points z, € 9{u > 0}.
This property is essential in order to study the free boundary later. As before,
for this we need the following natural assumption:

Assumption: The right-hand side f satisfies
f>c>0

i the ball Bi.

Proposition 2.27 (Nondegeneracy). Let u be any solution to (2.11). Assume that
f > ¢ >0 in By. Then, for every free boundary point xo € 0{u > 0} N By g, we
have

0<cr? < sup u<Cr? for all v € (0, 3),
B (7o)

with a constant ¢ > 0 depending only on n and c,.

Summary of basic properties. Let u be any solution to the obstacle problem

{ u > 0 in By,

Au = fX{u>O} in Bl.

Then, we have:

e Optimal regularity:  Jullnis, ) < C (lull e + | Flines,)

e Nondegeneracy: If f > ¢, > 0, then

0<er?< sup u<Cr? for all r € (0, %)
B (z,)

at all free boundary points 7o € 0{u > 0} N By 5.

Using these properties, we can now start the study of the free boundary.






Chapter 3

Regularity of free boundary

3.1 Regularity of free boundaries: an overview
From now on, we consider any solution to

u € 01’1(31),
u>0 in By, (3.1)
Au=f in {u > 0},

(see Figure 3.1) with
f>c>0 and fec™. (3.2)

Figure 3.1: A solution to the obstacle problem in Bj.

Notice that on the interface
I'= 8{u > O} N By

we have that

u=0 onl,
Vu=0 onl.

25
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The central mathematical challenge in the obstacle problem is to
understand the geometry/reqularity of the free boundary I'.

Notice that, even if we already know the optimal regularity of u (it is C1'1), we
know nothing about the free boundary I'. A priori I' could be a very irregular object,
even a fractal set with infinite perimeter.

As we will see, under the natural assumption f > ¢, > 0, it turns out that free
boundaries are always smooth, possibly outside a certain set of singular points. In
fact, in our proofs we will assume for simplicity that f = 1 (or constant). We do that
in order to avoid z-dependence and the technicalities associated to it, which gives
cleaner proofs. In this way, the main ideas behind the regularity of free boundaries
are exposed.

Main results: Assume from now on that u solves (3.1)-(3.2). Then, the main
known results on the free boundary I' = 9{u > 0} can be summarized as follows:

e At every free boundary point z, € I', we have

0<er?< sup u<Or? Vr e (0,75).
By ()

e The free boundary I' splits into reqular points and singular points.

e The set of regular points is an open subset of the free boundary, and I' is C'°° near
these points.

e Singular points are those at which the contact set {u = 0} has zero density, and
these points (if any) are contained in an (n — 1)-dimensional C'* manifold.

Summarizing, the free boundary is smooth, possibly outside a certain set of sin-
gular points. See Figure 3.2.

all regular points

/Au:fin{u>0}
Pt

one singular point
(the contact set has zero density)

Figure 3.2: Singular points are those where the contact set has zero density.

So far, we have not even proved that I' has finite perimeter, or anything at all
about I'. Our goal will be to prove that I' 1s C*° near reqular points.

Overview of the strategy

To prove these regularity results for the free boundary, one considers blow-ups.
Namely, given any free boundary point z, for a solution u of (3.1)-(3.2), one takes
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the rescalings
u(zo + 1)
up(r) == ————=
(o) = B
with r > 0 small. This is like “zooming in” at a free boundary point.
The factor 72 is chosen so that

[ur |l poe )y = 1

as r — 0; recall that 0 < ¢r? < SUPR, (z,) U < Cr2.

Then, by C1! estimates, we will prove that a subsequence of u, converges to a
function wug locally uniformly in R™ as » — 0. Such function ug is called a blow-up
of u at xo.

Any blow-up ug is a global solution to the obstacle problem, with f =1 (or with
f = constant > 0).

Then, the main issue is to classify blow-ups: that is, to show that

either up(z) = 5(x - e)t (this happens at regular points)

or up(x) = %xTAx (this happens at singular points).

Here, e € S ! is a unit vector, and A > 0 is a positive semi-definite matrix satis-
fying trA = 1. Notice that the contact set {ug = 0} becomes a half-space in case of
regular points, while it has zero measure in case of singular points;

Once this is done, one has to “transfer” the information from the blow-up ug to
the original solution u. Namely, one shows that, in fact, the free boundary is C'1®
near regular points (for some small o > 0).

Finally, once we know that the free boundary is C*%, we will bootstrap the regu-
larity to C*°. Once this was done, by Schauder estimates and a bootstrap argument
we saw that solutions are actually C'°.

Thus, how can we classify blow-ups? Do we get any extra information on wug that
we did not have for u? (Otherwise it seems hopeless!)

The answer is yes: CONVEXITY. We will prove that all blow-ups are always
conver. This is a huge improvement, since this yields that the contact set {ug = 0}
is also convex. Prior to that, we will also show that blow-ups are also homogeneous.

So, before the blow-up we had no information on the set {u = 0}, but after the
blow-up we get that {ug = 0} is a conver cone. Thanks to this we will be able to
classify blow-ups, and thus to prove the regularity of the free boundary.

The main steps in the proof of the regularity of the free boundary will be the
following;:

1.0<er?2< SUPR, (z,) U < Cr?

2. Blow-ups ug are homogeneous and convex.
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3. If the contact set has positive density at o, then ug(z) = 5(z - e)%.

4. Deduce that the free boundary is C® near ..

5. Deduce that the free boundary is C*° near x,.

The proof we will present here for the convexity of blow-ups is new, based on the
fact that they are homogeneous. We refer to [Caf98], [PSU12|, [Wei99], and [KN77],
for different proofs of the classification of blow-ups and/or of the regularity of free
boundaries.

3.2 Classification of blow-ups

The aim of this Section is to classify all possible blow-ups ug. For this, we will first
prove that blow-ups are homogeneous, then we will prove that they are convex, and
finally we will establish their complete classification.

3.2.1 Homogeneity of blow-ups

We start by proving that blow-ups are homogeneous. This is not essential in the
proof of the regularity of the free boundary (see [Caf98]), but it actually simplifies
it.

Therefore, from now on we consider a solution u satisfying (see Figure 3.3):

u e 01’1(31)
UZO in Bl
Au=1 in {u >0}

0 is a free boundary point.

(3.3)

We will prove all the results around the origin (without loss of generality).

Figure 3.3: A solution u to the obstacle problem with f = 1.
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We will show that, for the original solution u in By, the closer we look at a free
boundary point z,, the closer is the solution to being homogeneous.

Proposition 3.1 (Homogeneity of blow-ups). Let u be any solution to (3.3). Then,
any blow-up of u at 0 is homogeneous of degree 2.

It is important to remark that not all global solutions to the obstacle problem
in R™ are homogeneous. There exist global solutions ug that are convex, C11,
and whose contact set {ug = 0} is an ellipsoid, for example. However, thanks to
the previous result, we find that such non-homogeneous solutions cannot appear as
blow-ups, i.e., that all blow-ups must be homogeneous.

We provide two different proofs of Proposition 3.1. The first one uses a mono-
tonicity formula as introduced by Weiss; while the second one does not require any
monotonicity formula and is due to Spruck.

For the first proof of Proposition 3.1, we need the following monotonicity formula

due to Weiss [Wei99].

Theorem 3.2 (Weiss’ monotonicity formula). Let u be any solution to (3.3). Then,

the quantity
1

1
Wy (r) == / LVu? 4 ul - / u? (3.4)
2 B. { 2 } rt3 9B,

1s monotone in r, that is,

forr e (0,1).

Proof. Let u,(x) = r—2u(rx), and observe that

W (r) :/ {%|Vur|2+u,«} — u?.
B 9B,
Using this, together with
d d
%(VU/T) — Vaur,

we find
iWu(r)z/ V- VLo, + Lo _2/ w Lo
dr B, dr dr 9B, dr

Now, integrating by parts we get

d d d
/ VUT . V—u,’. = — / Au'p—ur + / al/ (UT)_UT-
B, dr B dr 0B dr
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Since Au, =1 in {u, > 0} and d%ur =0 in {u, = 0}, we have

d d d
/B1 Vu, - V%ur = — /B1 Jur + /OB1 (9,,(u7~)5u,«.

Thus, we deduce

d d d
—W = 0 —Uy — 2 — Uy
dr u(r) /8B1 V(ur)drur /8B1 urdTur

Using that on 0B1 we have 0, = z - V, combined with

d 1
%ur == {z - Vu, — 2u,}
yields
d 1
%Wu(r) == /aB1 (x - Vu, — 2ur)2 ,
which gives the desired result. O

We now give the:

First proof of Proposition 3.1. Let u,(z) = r~2u(rz), and notice that we have the
scaling property

W, (p) = Wulpr),

for any r, p > 0.
If ug is any blow-up of u at 0 then there is a sequence r; — 0 satisfying u,; — ug
in CL (R™). Thus, for any p > 0 we have

loc

Wao(p) = Tim Wy, (p) = lim Wa(pr;) = Wu(0T).

T
Notice that the limit Wy (0") := lim,_,0 W, (r) exists by monotonicity of W and
since u € C1! implies W, (r) > —C for all r > 0.

Hence, the function Wy, (p) is constant in p. However, by Theorem 3.2 this yields
that z - Vug — 2ug = 0 in R™, and therefore ug is homogeneous of degree 2. O

Remark 3.3. Here, we used that a C! function ug is 2-homogeneous (i.e. ug(A\z) =
Nug(z) for all A € R,) if and only if 2 - Vug = 2up.
This is because 0y| =1 {A‘zuo()\a:)} =z - Vug — 2ug.

We present an alternative (and quite different) proof of the homogeneity of blow-
ups. Such proof is due to Spruck [Spr83] and is not based on any monotonicity
formula.

Second proof of Proposition 3.1. Let ug be a blow-up given by the limit along a
sequence 1y, | 0,

up(x) :== klingo T,C_2u(rk:17).
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By taking polar coordinates (o, 8) € [0, +00) xS"~! with 2 = 0, and by denoting
ao(0,8) = uo(08) = uo(x), we will prove that ug(z) = *ao(1,0) = |x[*uo(z/|x]).
Let us define 7 := —log o, @(0,0) = u(x), and ¢» = (7, 0) as

(T, 0) = Q727:L(Q, 0) = ezTu(e*TH)

for 7 > 0. We observe that, since |[ul|p~(p,) < Cr?, 1 is bounded. Moreover,
P € C1((0,00) x S 1) N C?({¢p > 0}) from the regularity of u; and 0,1 and Vg1
are not only continuous, but also uniformly bounded in [0, c0) X S*—1. Indeed,

|Vg¢(7’, 0)| < eT‘Vu(e_TQ)‘ <,

since ||Vul[ze(p,) < Cr by C! regularity and the fact that Vu(0) = 0. For the
same reason we also obtain

|0 (7,0)| < 20(7,0) + €7 |Vu(e 70)| < C.
Observe that, by assumption, if we denote 75 := — log 1y,
Y(7k,0) = 1ig(1,6) uniformly on S"71 as k — oo. (3.5)

Let us now write an equation for ¢). In order to do that, since we know that
Au = X{u>0} and X{u>0} = X{¢>0}> W€ have

A(0*h(—1log o, 8)) = X{p0}-

By expanding the Laplacian in polar coordinates, A = 0,, + ”—;139 + 072 Agn1
(where Agn-1 denotes the spherical Laplacian, i.e. the Laplace-Beltrami operator
on S"1) we obtain

2n — (n + 2)8T¢ + Orr) + Agn-19p = X{¢>0}- (3'6)

We multiply the previous equality by 0;1, and integrate in [0, 7] X S*—1. We can
consider the terms separately, integrating in 7 first,

2n/ /T;z)aﬂp:n/ (¥2(7,6) — *(0,0)) db
Sm-1Jo Sn-1

' _! o ?
/Sn_l/ov aTTwaTw = 5 /Sn_1 ((37¢) ( 79) (aTw) (()’9)) d97

and then integrating by parts in @ first, to integrate in 7 afterwards:

/ / Agn- 1¢5r¢———/ / 07| Voo|?
Sn 1 Sn 1

=5 [ (V0.0 = 1VouPr.0)) o,

and
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Finally, since 0r¢ = 0 whenever ¢ = 0, we have x{y~0y0-¢ = 0-¢ and

/ / X0 0t = (v(7,0) —(0,0)) db.
S =1 J0 Sn—1

In all, plugging back in (3.6) the previous expressions, and using that 0,1 and
V1) are uniformly bounded in [0, 00) x S*~!, we deduce that

| @ = [ 1ol <0 <. 37)
0 Sn—1 0

To finish, now observe that for any |s| < Cy fixed and for a sufficiently large k
(such that 7, + s > 0),

[9(7k + 5,) = to(L, )l p2(sn-1) < (e + 5, ) = O(7h, )l L2(sm-1)
+ ||77Z)(Tk'7 ) - ﬂO(la ')||L2(S"*1)‘
The last term goes to zero, by (3.5). On the other hand, for the first term and by
Holder’s inequality

2
||,¢}(Tk + s, ) - w(TIw ')H%Q(Sn—l) <

[ ot ryar
0 L2(Sr—1)

Tk+S
/ 107112 (gn-1)

Tk

< — 0,

as k — oo, where we are using (3.7). Hence, (73, + s,-) — @g(1,-) in L%(S"71) as
k — oo, for any fixed s € R. On the other hand,

(1 + 5,0) = 6257’;211(6_27%9) — e®ug(e%0) = e*tg(e %, 0).
That is, for any p =e7° > 0,
ao(1,-) = p~*ao(p, 0),
as we wanted to see. O

By taking advantage of the fact that we know that blow-ups are 2-homogeneous,
we can now give a short (and new) proof of the fact that they are also convex. More
precisely, we will prove that 2-homogeneous global solutions to the obstacle problem
are convex (and in particular, by Proposition 3.1, blow-ups are convex).

Theorem 3.4. Let ug € Cb1 be any 2-homogeneous global solution to

ug > 0 m R™
Aug = 1 in{up >0}

0 is a free boundary point.

Then, ug 1s conver.
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The heuristic idea behind the proof of the previous result is the following: second
derivatives D?uq are harmonic in {ug > 0} and satisfy that D?ug > 0 on 0{uy >
0} (since ug > 0, it is “convex at the free boundary”). Since D?uq is also 0-
homogeneous, we can apply the maximum principle and conclude that D?ug > 0
everywhere. That is, ug is convex. Let us formalize the previous heuristic idea into
an actual proof.

We state a short lemma before providing the proof, which says that if w > 0 is
superharmonic in {w > 0}, then it is superharmonic everywhere. For the sake of
generality, we state the lemma for general H' functions, but we will use it only for
functions that are also continuous.

Lemma 3.5. Let A C By be closed. Let w € HY(By) be such that w > 0 on A
and such that w is superharmonic in the weak sense in By \ A. Then min{w, 0} is
superharmonic in the weak sense in By.

We now give the:

Proof of Theorem 3.4. Let e € S"~! and consider the second derivatives Opctg. We
define

wp := min{decup, 0}

and we claim that wg is superharmonic in R”, in the sense (77).
Indeed, let 62ug(x) for t > 0 be defined by

ug(z + te) + up(z — te) — 2up(x)
t2 ’

02ug(z) ==

Now, since Aug = X{yo>0}, We have that

1 .
A(Stzuo = t_2<X{uo(~+te)} + X{uo(- —te)} — 2) <0 in {up >0}

in the weak sense. On the other hand, (5t2u0 > 0 in {up = 0} and (5tzuo e CLL.
Thus, by Lemma 3.5, wy := min{é?uo, 0} is weakly superharmonic. Also notice that
5?u0(x) is uniformly bounded independently of ¢, since ug € Cb!, and therefore w;
is uniformly bounded in ¢ and converges pointwise to wqg as t | 0. In particular, we
have that wyg is superharmonic.

Up to changing it in a set of measure 0, wq is lower semi-continuous. In particular,
since wq is 0-homogeneous, it must attain its minimum at a point y, € B;. But
since J[B (o) WO is non-increasing for r > 0, we must have that wq is constant. Since

it vanishes on the free boundary, we have wg = 0. That is, for any e € S"! we
have that Oqcug > 0 and therefore ug is convex.
O
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3.2.2 Classification of blow-ups

We next want to classify all possible blow-ups for solutions to the obstacle problem
(3.3). First, we will prove the following.

Proposition 3.6. Let u be any solution to (3.3), and let

u(rz)

ur(z) == 2

Then, for any sequence 1, — 0 there is a subsequence r, — 0 such that
Up,, — Uy in CL (R
as kj — oo, for some function ug satisfying
1,1
[ ug € C. (R™)
up >0 in By
Aug =1 in {up > 0}

0 s a free boundary point

Uug 1S conver
L ug is homogeneous of degree 2.

Proof. By C11 regularity of u, and by nondegeneracy, we have that

1
— <supu, <C
C_Blp r >

for some C' > 0. Moreover, again by C1! regularity of u, we have

<C.

2
D u?"”Lw(Bl/(m) <

Since the sequence {u;, }, for rj, — 0, is uniformly bounded in C*!(K) for each
compact set K C R", there is a subsequence 73, — 0 such that

Up,, — UQ in Clloc(R”)

for some uy € C1(K). Moreover, such function ug satisfies HDQuOHLm(K) < C,
with C' independent of K, and clearly ug > 0 in K.

The fact that Aug = 1 in {up > 0} N K can be checked as follows. For any smooth
function n € C°({ug > 0} N K) we will have that, for k; large enough, uy, > 0 in
the support of 7, and thus

/Vurkj-Vndx:—/ ndz.

Since Up,, = Up In CL(K), we can take the limit k; — oo to get

/Vuo-Vndx:—/ ndx.
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Since this can be done for any n € C°({u > 0} N K), and for every K C R", it
follows that Aug =1 in {ug > 0}.

The fact that 0 is a free boundary point for ug follows simply by taking limits to
Up,, (0) = 0 and Humj (B, = p? for all p € (0,1). Finally, the homogeneity and
convexity of ug follow from Proposition 3.1 and Theorem 3.4. O]

Our next goal is to prove the following.

Theorem 3.7 (Classification of blow-ups). Let u be any solution to (3.3), and let
ug be any blow-up of u at 0. Then,

(a) either
w(o) = 3z )2

for some e € SP1.

(b) or
up(x) = %ITAI

for some matriz A > 0 with tr A = 1.

It is important to remark here that, a priori, different subsequences could lead
to different blow-ups ug.
In order to establish Theorem 3.7, we will need the following.

Lemma 3.8. Let ¥ C R"™ be any closed convexr cone with nonempty interior, and
with vertex at the origin. Let w € C(R™) be a function satisfying Aw = 0 in 3¢,
w >0 X° and w =0 in X.

Assume in addition that w is homogeneous of degree 1. Then, ¥ must be a half-
space.

Proof. By convexity of ¥, there exists a half-space H = {z - e > 0}, with e € S"71,
such that H C X°.

Let v(x) = (x - €)4+, which is harmonic and positive in H, and vanishes in H¢.
By the Hopf Lemma (see Lemma 1.9), we have that w > ¢ody in 3¢ N By, where
dy(z) = dist(z,3) and ¢, is a small positive constant. In particular, since both w
and dy; are homogeneous of degree 1, we deduce that w > c.dy, in all of ¥¢. Notice
that, in order to apply the Hopf Lemma, we used that — by convexity of ¥ — the
domain ¢ satisfies the interior ball condition.

Thus, since dy, > dge = v, we deduce that w > cov, for some ¢, > 0. The
idea is now to consider the functions w and cv, and let ¢ > 0 increase until the
two functions touch at one point, which will give us a contradiction (recall that two
harmonic functions cannot touch at an interior point). To do this rigorously, define

o i=sup{c>0:w>cv in X}
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Notice that ¢, > ¢, > 0. Then, we consider the function w — c,v > 0. Assume
that w — c,v is not identically zero. Such function is harmonic in H and hence, by
the strict maximum principle, w — c,v > 0 in H. Then, using the Hopf Lemma in
H (see Lemma 1.9) we deduce that w — c,v > codpe = cov, since v is exactly the
distance to H¢. But then we get that w — (¢4 + ¢o)v > 0, a contradiction with the
definition of cy.

Therefore, it must be w — c,v = 0. This means that w is a multiple of v, and
therefore ¥ = H€, a half-space. m

We will also need the following.

Lemma 3.9. Assume that Au = 1 in R™ \ OH, where OH is a hyperplane. If
u € CHR™), then Au =1 in R™.

Proof. Assume 0H = {x; = 0}. For any ball Br C R", we consider the solution to
Aw = 11in Br, w = u on 0Bp, and define v = v — w. Then, we have Av = 0 in
Br \ 0H, and v = 0 on 0BRr. We want to show that u coincides with w, that is,
v =0 in Bpg.

For this, notice that since v is bounded, for x > 0 large enough we have

v(z) < k(2R — [z1]) in B,

where 2R — |z1] is positive in Br and harmonic in Bg \ {z1 = 0}. Thus, we may
consider £* := inf{x > 0: v(z) < k(2R — |x1|) in Bpg}. Assume x* > 0. Since
v and 2R — |z1| are continuous in Bg, and v = 0 on dBpr, we must have a point
p € Bp at which v(p) = x*(2R — |p1|). Moreover, since v is C', and the function
2R — |z1| has a wedge on 0H = {z1 = 0}, we must have p € Br\ 0H. However, this
is not possible, as two harmonic functions cannot touch tangentially at an interior
point p. This means that x* = 0, and hence v < 0 in Bi. Repeating the same
argument with —v instead of v, we deduce that v = 0 in By, and thus the lemma is
proved. O

Finally, we will use the following basic property of convex functions.

Lemma 3.10. Let u : R™ — R be a convex function such that the set {u = 0}
contains the straight line {te’ : t € R}, ¢’ € S*"1. Then, u(z + te') = u(z) for all
r € R" and all t € R.

Proof. After a rotation, we may assume ¢ = e,. Then, writing z = (2/,z,) €
R"! x R, we have that u(0,z,) = 0 for all 2, € R, and we want to prove that
u(z’, x,) = u(z’,0) for all 2’ € R*~! and all 2, € R.

Now, by convexity, given 2’ and x,,, for every € > 0 and M € R we have

(1 —&)u(z’, zn) + eu(0, 2y + M) > u((1 —e)2’, z, +eM).
Since u(0, zy, + M) = 0, choosing M = A\/e and letting ¢ — 0 we deduce that
w(' xy) > uz!, z, + N).

Since this can be done for any A € R and z;,, € R, the result follows. ]
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We finally establish the classification of blow-ups at regular points.

Proof of Theorem 3.7. Let ug be any blow-up of u at 0. We already proved that wug
is convex and homogeneous of degree 2. We divide the proof into two cases.

Case 1. Assume that {ug = 0} has nonempty interior. Then, we have {ug = 0} = %,
a closed convex cone with nonempty interior.
For any direction 7 € S*~! such that —7 € 3, we claim that

Orup >0 in R"™

Indeed, for every x € R™ we have that ug(z + 7t) is zero for ¢ < —1, and therefore
by convexity of ug we get that dyug(x + 7¢) is monotone non-decreasing in t, and
zero for t < —1. This means that dyug > 0, and thus d;ug > 0 in R", as claimed.

Now, for any such 7, we define w := 0,ugp > 0. Notice that, at least for some
7€ S" ! with —7 € EO], the function w is not identically zero. Moreover, since it is
harmonic in 3¢ — recall that Aug = 1 in 3¢ — then w > 0 in X°.

But then, since w is homogeneous of degree 1, we can apply Lemma 3.8 to deduce
that we must necessarily have that X is a half-space.

By convexity of ug and Lemma 3.10, this means that ugp is a one-dimensional
function, i.e., ug(z) = U(x - e) for some U : R — R and some e € S"~1. Thus, we
have that U € CH! solves U”(t) = 1 for t > 0, with U(t) = 0 for ¢ < 0. We deduce
that U(t) = 3t2, and therefore ug(z) = %($ ce)?.

Case 2. Assume now that {ug = 0} has empty interior. Then, by convexity, {uy =
0} is contained in a hyperplane OH. Hence, Aug = 1 in R™ \ 0H, with OH being
a hyperplane, and vy € CH!. It follows from Lemma 3.9 that Auy = 1 in all of
R™. But then all second derivatives of ug are harmonic and globally bounded in
R"™, so they must be constant. Hence, ug is a quadratic polynomial. Finally, since
up(0) = 0, Vug(0) = 0, and ug > 0, we deduce that ug(z) = 327 Az for some A > 0,
and since Aug = 1, we have tr A = 1. O

3.3 Regularity of the free boundary

The aim of this Section is to prove Theorem 3.19 below, i.e., that if u is any solution
to (3.3) satisfying
_ ‘{u =0}n Br}
lim sup

3.8
r—0 |Br| ( )

(i.e., the contact set has positive density at the origin), then the free boundary
0{u > 0} is C* in a neighborhood of the origin.

For this, we will use the classification of blow-ups established in the previous
Section.
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C1@ regularity of the free boundary

The first step here is to transfer the local information on w given by (3.8) into a
blow-up ug. More precisely, we next show that
The contact set of a blow-up ug

(3.8) = o
has nonempty interior.

Lemma 3.11. Let u be any solution to (3.3), and assume that (3.8) holds. Then,
there is at least one blow-up ug of u at 0 such that the contact set {ug = 0} has
nonempty interior.

Proof. Let ri, — 0 be a sequence along which

. ‘{u:O}ﬂBrk‘
lim

>0 >0.
rk—>0 ’B"'k | -

Such sequence exists (with 6 > 0 small enough) by assumption (3.8).
Recall that, thanks to Proposition 3.6, there exists a subsequence ry; | 0 along

2u(rx) and g

which up, — uo uniformly on compact sets of R™, where u,(x) =r~
is convex.

Assume by contradiction that {ug = 0} has empty interior. Then, by convexity,
we have that {ug = 0} is contained in a hyperplane, say {ug = 0} C {z1 = 0}.

Since ug > 0 in {x; # 0} and wg is continuous, we have that for each 6 > 0
ug > € >0 in {|CL’1| >(5}ﬂBl

for some ¢ > 0.
Therefore, by uniform convergence of U, t0 g in By, there is rg; > 0 small
enough such that
€
Upy, = 3> 0 in {|x1| >0} N By.

In particular, the contact set of up, is contained in {|z1| < 0} N By, so

[{ur,, =0} N B g {|z1] < 6} N By

< (.
| B - | B -
Rescaling back to u, we find
| By, | | Bi]
. . : [{u=0}NBr, |
Since we can do this for every 6 > 0, we find that lim,, _ TIJ =0, a
J Tkj
contradiction. Thus, the lemma is proved. O

Combining the previous lemma with the classification of blow-ups from the pre-
vious Section, we deduce:
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Corollary 3.12. Let u be any solution to (3.3), and assume that (3.8) holds. Then,
there is at least one blow-up of u at 0 of the form

1
up(x) = 5(38 “e)?, eec S
Proof. The result follows from Lemma 3.11 and Theorem 3.7. O]

We now want to use this information to show that the free boundary must be
smooth in a neighborhood of 0. For this, we start with the following.

Proposition 3.13. Let u be any solution to (3.3), and assume that (3.8) holds. Fix
any € > 0. Then, there exist e € S"1 and ro > 0 such that

‘uro(:n)—%(x-e)ﬁ_‘ <e in B,

and
}(‘%uro(x) —(z-e)s(r- e)| <e in B

for all T € S 1.

Proof. By Corollary 3.12 and Proposition 3.6, we know that there is a subsequence

r; — 0 for which u;,, — %(:c : e)li in CL_(R"), for some 616 S”_;. In particular, for

every 7 € S"! we have U, — (- 6)?F and Oru,; — Or [i(x . e)+} uniformly in Bj.
This means that, given ¢ > 0, there exists j, such that

‘urjo(x)—%(x-e)i| <e in By,

and
|5’7u7~j0 (x) — OF [%(m . 6)3_} ’ <e in Bj.

Since O [%(m . e)ﬂ = (x - e)4+(7 - €), the proposition is proved. O

Now, notice that if (7 -e) > 0, then the derivatives d,ug = (z - €)4(7 - €) are
nonnegative, and strictly positive in {z - e > 0}.

We want to transfer this information to w,,, and prove that d;u,, > 0 in By for
all 7 € S*! satisfying 7 - e > % For this, we need a lemma.

Lemma 3.14. Let u be any solution to (3.3), and consider u,,(x) = 5 %u(rox) and
Q = {u,, > 0}.
Assume that a function w € C(B1) satisfies:

(a) w is bounded and harmonic in QN By.
(b) w=0 ondQN Bj.
(¢) Denoting Ny := {x € By : dist(z, Q) <}, we have

w>—c1 in Ng and w>Cy>0 in Q\ Ny.
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If ¢1/Cy is small enough, and § > 0 is small enough, then w > 0 in By N

Proof. Notice that in '\ Nj we already know that w > 0. Let y, € Ny N QN By,
and assume by contradiction that w(yg) < 0.
Consider, in By /4(yo), the function

o(@) = w(@) ~ 7 {ur, () = ol — ol }

o

Then, Av = 0 in By4(yo) N2, and v(yo) < 0. Thus, v must have a negative
minimum in 8(81/4(y0) N Q)
However, if ¢;/Cy and 6 are small enough, then we reach a contradiction as

follows:
On 9Q we have v > 0. On 9B 4(yo) N Ns we have

7 (1)?
v > —cp — Coyd? + %0 (Z) >0 on 9By(yo) N Ns.

On 0By /4(yo) N (Q \ N(;) we have
v>Cy—Coy>0 on 831/4(yo) N (Q \ N(;).

Here, we used that [[uy,[|c11(p,) < Co, and chose Cocy < v < Co/C. O

Using the previous lemma, we can now show that there is a cone of directions 7
in which the solution is monotone near the origin.

Proposition 3.15. Let u be any solution to (3.3), and assume that (3.8) holds. Let

up(x) = r~2u(rz). Then, there exist ro >0 and e € S"~! such that

8Turo 2 0 B1/2
n—1 ; ; 1
for every T € S satisfying 7-e > 3.
Proof. By Proposition 3.13, for any € > 0 there exist e € S®! and r, > 0 such that
‘uro(x) — iz e)i‘ <e in B (3.9)

and
|37Uro () — (z-e)4(T- e)| <e in B (3.10)

for all 7 € S*~1.
We now want to use Lemma 3.14 to deduce that O,u,, > 0if 7-e > % First, we
claim that

ur, >0 in {x-e>Co/e},
ur, =0 in {z-e< —Coye}, (3.11)
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and therefore the free boundary 092 = 90{u,, > 0} is contained in the strip {|x - e| <
Csv/e}, for some Cs depending only on n (see Figure 3.4). To prove this, notice
that if x - e > Coy/e then

1
Up, > 5(00\/5)2 —e>0,

while if there was a free boundary point z, in {x-e < —Cse} then by nondegeneracy

we would get
sup  tp, > c(Cor/2)? > 2¢,
BCO\/E(:CO)

a contradiction with (3.9).

20;[7’

Figure 3.4: The setting in which we use Lemma 3.14.

Therefore, we have

00 C {|z-e| < Cov/e}
Now, for each 7 € S"~! satisfying 7 - e > % we define
w = Orly, .
In order to use Lemma 3.14, we notice:
(a) w is bounded and harmonic in QN By.
(b) w =0 on 002N Bj.
(c) Thanks to (3.10), if § > /e then w satisfies
w > —e in Ng

and

w>6/4>0 in (Q\ Ny) N Bi.
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(We recall Ny := {x € By : dist(x,09) < ¢}.)
Indeed, to check the last inequality we use that, by (3.11), we have {z -e <
d — Coy/e} NQ C Ny. Thus, by (3.10), we get that for all z € (2 \ Ns) N By

1 1 1 1
> (- —e> 60— -C, — >_§7
w_2(x e)+ €23 20\/2 €27

provided that d > \/e.
Using (a)-(b)-(c), we deduce from Lemma 3.14 that

w Z 0 in Bl/?'
Since we can do this for every 7 € S*~! with 7-e > %, the proposition is proved. [

As a consequence of the previous proposition, we find:

Corollary 3.16. Let u be any solution to (3.3), and assume that (3.8) holds. Then,
there exists ro > 0 such that the free boundary 0{u,, > 0} is Lipschitz in By . In
particular, the free boundary of u, 0{u > 0}, is Lipschitz in B, /2.

Proof. This follows from the fact that druy, > 0 in By for all 7 € S*=1 with
T-e> % (by Proposition 3.15), as explained next.
Let x5 € By/y N O{uy, > 0} be any free boundary point in By /o, and let

@::{TGS”A:T'€>%}7

= {xEBl/Q:a::xo—tT, with 7 € 9, t>0},

and
Yo = {xEBl/Q:x:xo+t7’, with 7 € O, t>0},

see Figure 3.5.

Figure 3.5: Representation of X1 and X.

We claim that

A2
Up, > 0 in Do. (3 )

o

{uro = 0 in Y,
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Indeed, since u,, () = 0, it follows from the monotonicity property 0;u,, > 0 —
and the nonnegativity of u,, — that u, (zo —tr) =0forallt > 0and 7 € ©. In
particular, there cannot be any free boundary point in ;.

On the other hand, by the same argument, if u, (z1) = 0 for some x; € ¥y then
we would have u,, = 0 in {x € Bypp:rax=x1—tr, witht €0, t> 0} 3 ., and in
particular x, would not be a free boundary point. Thus, u, (z1) > 0 for all 1 € X5,
and (3.12) is proved.

Finally, notice that (3.12) yields that the free boundary d{u,, > 0}N B, /5 satisfies
both the interior and exterior cone condition, and thus it is Lipschitz. O

Once we know that the free boundary is Lipschitz, we may assume without loss
of generality that e = e, and that

O{ur, > 0} N By = {xn = g(2")} N By o
for a Lipschitz function g : R*~! — R. Here, z = (2/,2,), with 2/ € R*~! and

xn € R.

Now, we want to prove that Lipschitz free boundaries are C. A key ingredient
for this will be the following basic property of harmonic functions (see Figure 3.6
for a representation of the setting).

Figure 3.6: Setting of the boundary Harnack.

Theorem 3.17 (Boundary Harnack). Let wy and wy be positive harmonic functions
in By NQ, where Q C R™ is any Lipschitz domain.

Assume that wy and wo vanish on OQ N By, and C71 < HwiHLoo(Bl/Q) < (s for
1=1,2. Then,

1 _
Ewg <wy < Cws m QN B1/2.

w1
w2

Moreover,

<C
Co’a(ﬁﬂBl/g)
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for some small « > 0. The constants o and C' depend only on n, Cs, and ).

We refer to [DS20] for the boundary Harnack for more general operators and to
[AS19, RT21] for the boundary Harnack for equations with a right hand side.

The boundary Harnack is a crucial tool in the study of free boundary problems,
and in particular in the obstacle problem. Here, we use it to prove that the free
boundary is C1® for some small a > 0.

Proposition 3.18. Let u be any solution to (3.3), and assume that (3.8) holds.
Then, there exists o > 0 such that the free boundary O{u,, > 0} is CH* in By 4,
for some small o > 0. In particular, the free boundary of u, d{u > 0}, is C1 in

B,/

Proof. Let Q = {u,, > 0}. By Corollary 3.16, if o, > 0 is small enough then
(possibly after a rotation) we have

QN Byjg = {xn > g(a’)} N By o
and the free boundary is given by
90N Byjy = {xn = g(a’)} N By s,

where ¢ is Lipschitz.

Let

wo := O, Uy,
and
w1 = Og; Uy, + Oe, Ur,, i1=1,...n—1.

Since druyp, > 0 in By for all 7 € Sr=1 with 7 - e, > %,
Bl/2 and w1 Z 0 in B1/2.

This is because D, + Oc, = O, te, = V20;, with 7 - e, = 1//2 > % Notice that
we add the term O, u,, in w; in order to get a nonnegative function wy > 0.

we have that wo > 0 in

Now since w; and ws are positive harmonic functions in 2N By 9, and vanish on
02N By /5, we can use the boundary Harnack, Theorem 3.17, to get
= <c
C’Ova(ﬁﬂBl/Q

w2

for some small a > 0. Therefore, since wy /wy = 1 + O, tr, /e, ur,, we deduce

Now, we claim that this implies that the free boundary is C1® in B, /4- Indeed, if

Desry <c. (3.13)

Co’a(ﬁﬂB1/4)

Oe, Uy,

ur, () =t then the normal vector to the level set {u,, =t} is given by

_ aei uTo _ aei uro /aen uro

) [V, : \/1 +Z;:11 (aejuTo/ae"u“)Q

, 1=1,..,n.

()
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This is a C%“ function by (3.13), and therefore we can take ¢t — 0 to find that the
free boundary is C® (since the normal vector to the free boundary is given by a
C% function). O

So far we have proved that

( {u = 0} has positive > . < any blow-up is ) N ( free boundary )

density at the origin ug = %(z e)? is C1® near 0

As a last step in this section, we will now prove that C® free boundaries are
actually C°°.

3.3.1 Higher regularity of the free boundary

We want to finally prove the smoothness of free boundaries near regular points.

Theorem 3.19 (Smoothness of the free boundary near regular points). Let u be any
solution to (3.3), and assume that (3.8) holds. Then, the free boundary 0{u > 0} is
C*™ in a neighborhood of the origin.

For this, we need the following result.

Theorem 3.20 (Higher order boundary Harnack). Let Q C R” be any C* domain,
with k > 1 and a € (0,1). Let wy, wa be two solutions of Aw; =0 in B1NQ, w; =0
on 02N By, with wy > 0 in €.

Assume that C51 < |will LB, ,5) < Co. Then,

where C depends only on n, k, a, Cs, and €.

w1

w2

<C,
Ck’a(ﬁmBl/g)

We refer to [DS16] for the proof of such result.

Proof of Theorem 3.19. Let u,,(z) = r5%u(rox). By Proposition 3.18, we know

that if r, > 0 is small enough then the free boundary d{u,, > 0} is C1* in By, and
(possibly after a rotation) O, uy, > 0 in {u,, > 0} N B;. Thus, using the higher
order boundary Harnack (Theorem 3.20) with wy = O¢,uy, and wy = Oe, uyr,, we find
that

Actually, by a simple covering argument we find that

Oe,; Ur, <

Cl’a(ﬁﬂBl/g)

Oe, Uy,

Oeitir, < Gy (3.14)

aenuro C1e(QNB;_s)

for any 6 > 0.
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Now, as in the proof of Proposition 3.18, we notice that if u, (x) = t then the
normal vector to the level set {u,, =t} is given by

_ aeiu?‘o . 8eiuro/aenuro

Vi \/1 + 2?21 (8€j U, /aenu%)2

) 1=1,...,n.

v (x)

By (3.14), this is a C1® function in By_gs for any § > 0, and therefore we can take
t — 0 to find that the normal vector to the free boundary is C™® inside B;. But
this means that the free boundary is actually C%.

Repeating now the same argument, and using that the free boundary is C>¢ in
By_s for any 6 > 0, we find that

which yields that the normal vector is C*“ and thus the free boundary is C3.
Iterating this argument, we find that the free boundary d{u,, > 0} is C° inside
By, and hence 0{u > 0} is C*° in a neighborhood of the origin. ]

O, U, e
-~ )

C22(QNB;_y)

Oe, Ur,

This completes the study of reqular free boundary points. It remains to under-
stand what happens at points where the contact set has density zero.



Chapter 4
Singular points

We finally study the behavior of the free boundary at singular points, i.e., when

. {u=0}n5|

4.1
r—0 |Br‘ ( )

For this, we first notice that, as a consequence of the results of the previous Section,
we get the following.

Proposition 4.1. Let u be any solution to (3.3). Then, we have the following
dichotomy:

(a) Either (3.8) holds and all blow-ups of u at 0 are of the form

uolw) = (-l

for some e € SP1.

(b) Or (4.1) holds and all blow-ups of u at 0 are of the form

up(x) = §ZL’TAZE,

for some matrix A > 0 with tr A = 1.

Points of type (a) were studied in the previous Section; they are called reqular
points and the free boundary is C*° around them (in particular, the blow-up is
unique). Points of type (b) are those at which the contact set has zero density, and
are called singular points.

To prove the result, we need the following:

Lemma 4.2. Let u be any solution to (3.3), and assume that (4.1) holds. Then,
every blow-up of u at 0 satisfies |[{ug = 0}| = 0.

47
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Proof. Let up be a blow-up of u at 0, i.e., uy, — up in C’I{)C(R”) along a sequence
re — 0, where u,(z) = r~2u(rz).
Notice that the functions u, solve

AUT:X{UT>0} in Bl,

in the sense that
/ Vu, - Vndr = / X{u,>03ndxr  for all p € C°(By). (4.2)
B1 Bl

Moreover, by assumption (4.1), we have |{u,« =0}nN Bl| — 0, and thus taking
limits 7, — 0 in (4.2) we deduce that Aug = 1 in By. Since we know that wug is
convex, nonnegative, and homogeneous, this implies that [{ug =0} = 0. O

We can now give the:

Proof of Theorem 4.1. By the classification of blow-ups (Theorem 3.7), the possible
blow-ups can only have one of the two forms presented. If (3.8) holds for at least
one blow-up, thanks to the smoothness of the free boundary (by Proposition 3.18),
it holds for all blow-ups, and thus, by Corollary 3.12, ug(z) = 3(z-¢)2 (and in fact,
the smoothness of the free boundary yields uniqueness of the blow-up in this case).

If (4.1) holds, then by Lemma 4.2 the blow-up ug must satisfy ’{uo = O}| =0,

and thus we are in case (b) (see the proof of Theorem 3.7). O

In the previous Section we proved that the free boundary is C'°*° in a neighbor-
hood of any regular point. A natural question then is to understand better the
solution w near singular points.

One of the main results in this direction is the following.

Theorem 4.3 (Uniqueness of blow-ups at singular points). Let u be any solution
to (3.3), and assume that 0 is a singular free boundary point.

Then, there ezists a homogeneous quadratic polynomial pa(x) = %zTAx, with
A >0 and Aps = 1, such that

Up —> P2 in  CL.(R™).
In particular, the blow-up of u at 0 is unique, and u(x) = pa(z) + o(|z|?).
To prove this, we need the following monotonicity formula due to Monneau.

Theorem 4.4 (Monneau’s monotonicity formula). Let u be any solution to (3.3),
and assume that 0 is a singular free boundary point.

Let q be any homogeneous quadratic polynomial with ¢ > 0, ¢(0) = 0, and Aq = 1.
Then, the quantity

1 2
My q(r) = m/aza (u—1q)

is monotone in r, that is, %Mu’q(r) > 0.
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Proof. We sketch the argument here, and refer to [PSU12, Theorem 7.4] for more
details.
We first notice that

u — 2 rx
Mugt) = [ =),

and hence a direct computation yields

d 2
M) = 7 [ ) V- -2 )

On the other hand, it turns out that

[ ) e V= 0) =2 ) = Wale) = W0+

r”1+2 /B (u —q)A(u —q),

T

_|_

where W, (r) (as defined in (3.4)) is monotone increasing in 7 > 0 thanks to Theo-
rem 3.2. Thus, we have

d 2
M) > =25 [ (w=-Au—a)

But since Au = Ag =1 in {u > 0}, and (v — ¢)A(u — ¢) = ¢ > 0 in {u = 0}, we

have p )
_M s (T) Z / q Z 07
el rnt3 Bo{u=0}

as wanted. O

We can now give the:

Proof of Theorem 4.3. By Proposition 4.1 (and Proposition 3.6), we know that at
any singular point we have a subsequence r; — 0 along which u,, — p in Cﬁ) (R™),
where p is a 2-homogeneous quadratic polynomial satisfying p(0) = 0, p > 0, and
Ap = 1. Thus, we can use Monneau’s monotonicity formula with such polynomial

p to find that
1 2
Mu,p(T) = T3 /QBT (u _p)

is monotone increasing in r > 0. In particular, the limit lim,_,o My, ,(r) := M, ,(07)
exists.

Now, recall that we have a sequence r; — 0 along which u,;, — p. In particular,
rj_Q {u(rjz) — p(rjz)} — 0 locally uniformly in R", i.e.,

1
—llu=pllr=s,) —0
Tj J
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as rj — 0. This yields that

1 2
T; 9B, /

along the subsequence r; — 0, and therefore M, ,(07) = 0.
Let us show that this implies the uniqueness of blow-ups. Indeed, if there was

another subsequence r;, — 0 along which u,, — ¢ in C' (R™), for a 2-homogeneous

loc
quadratic polynomial ¢, then we would repeat the argument above to find that

M, 4(07) = 0. But then this yields, by homogeneity of p and g,

1
/a (p—q)= pEE /a (p— 0)* < 2Myp(r) + 2My g (r) — 0,
B1 B

r

/831(1?—61)2—0.

This means that p = ¢, and thus the blow-up of u at 0 is unique.

Let us finally show that u(z) = p(z) + o(|z|?), i.c., r2|lu = pllp=(p,) — 0 as
r — 0. Indeed, assume by contradiction that there is a subsequence r, — 0 along
which

and hence

T’I;2|lu _p”Loo(Brk) >c1 > 0.

Then, there would be a subsequence of ry, along which u,, — ug in CL_(R™), for a
certain blow-up wug satisfying |luo — pl[z(p,) > c1 > 0. However, by uniqueness of
blow-ups it must be ug = p, and hence we reach a contradiction. O

Summarizing, we have proved the following result:

Theorem 4.5. Let u be any solution to (3.3). Then, we have the following di-
chotomy:

(a) Either all blow-ups of u at 0 are of the form

1
up(z) = §(x -e)% for some e € S"T

and the free boundary is C'°° in a neighborhood of the origin.

(b) Or there is a homogeneous quadratic polynomial p, with p(0) =0, p > 0, and
Ap =1, such that

lu = pllps(p,y =o(®)  as 0.

In particular, when this happens we have

The last question that remains to be answered is: How large can the set of
singular points be? This is the topic of the following section.
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4.1 On the size of the singular set

We finish this chapter with a discussion of more recent results (as well as some open
problems) about the set of singular points.
Recall that a free boundary point z, € 9{u > 0} is singular whenever

- ’{u =0} N By(xo) 0

'3 |Br(ao)]

The main known result on the size of the singular set reads as follows.

Theorem 4.6 ([Caf98]). Let u be any solution to (3.3). Let ¥ C By be the set of
singular points.
Then, 3N By g is locally contained in a C' manifold of dimension n — 1.

This result is sharp, in the sense that it is not difficult to construct examples in
which the singular set is (n — 1)-dimensional; see [Sch77].

As explained below, such result essentially follows from the uniqueness of blow-
ups at singular points, established in the previous section.

Indeed, given any singular point zo, let p,, be the blow-up of u at x, (recall
that p,, is a nonnegative 2-homogeneous polynomial). Let k be the dimension of
the set {py, = 0} — notice that this is a proper linear subspace of R", so that
k€ {0,...,n — 1} — and define

Si = {xo € S : dim({ps, = 0}) = k}. (4.3)

—1
Clearly, ¥ = [ J,_y X
The following result gives a more precise description of the singular set.

Proposition 4.7 ([Caf98]). Let u be any solution to (3.3). Let X C By be defined
by (4.3), k=1,...,n—1. Then, ¥} is locally contained in a C* manifold of dimension
k.

4.1.1 Generic regularity

In PDE problems in which singularities may appear, it is very natural and impor-
tant to understand whether these singularities appear “often”, or if instead “most”
solutions have no singularities.

In the context of the obstacle problem, the key question is to understand the
generic regularity of free boundaries. Explicit examples show that singular points
in the obstacle problem can form a very large set, of dimension n — 1 (as large as
the regular set). Still, singular points are expected to be rare (see [Sch74]):

Conjecture (Schaeffer, 1974): Generically, the weak solution of the obstacle prob-
lem is also a strong solution, in the sense that the free boundary is a C'°° manifold.
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In other words, the conjecture states that, generically, the free boundary has no
singular points.

The first result in this direction was established by Monneau in 2003, who proved
the following.

Theorem 4.8 ([Mon03]). Schaeffer’s conjecture holds in R?.

More precisely, Monneau considers a 1-parameter family of solutions u), with
A € (0,1), such that
Auy = X{u,>0} in 2
uy = A on 0f),

with A > 0 on 0f2.

Then, the first step is to notice that not only each of the singular sets ¥, C 2 is
contained in a C'' manifold of dimension (n—1), but actually the union U, (0,1) ¥\ C
(2 is still contained in an (n — 1)-dimensional manifold.

After that, we look at the free boundary as a set in € x (0,1) > (x, \), and notice
that it can be written as a graph {\A = h(x)}, for some function h. A second key
step in the proof is to show that h is Lipschitz and, furthermore, it has zero gradient
at any singular point. This, combined with the coarea formula, yields that in R? the
set of singular points is empty for almost every A € (0,1), which implies Theorem
4.8.

Finally, the best known result in this direction was established very recently by
Figalli, Serra, and the second author.

Theorem 4.9 ([FRS20)). Schaeffer’s conjecture holds in R3 and R*.

The proof of this result is based on a new and very fine understanding of singular
points. For this, [FRS20] combines Geometric Measure Theory tools, PDE esti-
mates, several dimension reduction arguments, and even several new monotonicity
formulas.

It remains an open problem to decide whether or not Schaeffer’s conjecture holds
in dimensions n > 5 or not.

In the next section we will give the proof of the Schaeffer’s conjecture in R?
(Theorem 4.8) based on the paper of Monneau, see [Mon03].



Chapter 5

Schaeffer’s conjecture

5.1 Monneau’s proof of the Schaeffer’s conjecture

From now on we are in the setting described in Theorem 4.8.

Let us introduce a new function:
h(z) :=sup{\ € [0, +00) | uy(z) = 0}.

We will prove the next two propositions in order to complete the proof of the The-
orem.

Proposition 5.1. The function h is Lipschitz-continuous on
Proposition 5.2.
{h = A} ={un=0}

{h =X} = 0{uy = 0} (5:1)

Monneau improved Caffarelli’s Theorem 4.6 in the following sense.

Theorem 5.3 ([Mon03], A C'-submanifolds contains almost all singulararities).
Let
S\ = the set of singular points of the coincidence set of uy

Si:USA

A>0

then there exists a set £ C S such that H" 1 (E) =0 and S\ E is incuded in a C!
(n — 1)-dimensional submanifold of finite (n — 1)-volume.

and

Let us now recall the coarea formula.

Theorem 5.4 ([Fed69] Coarea Formula). Let A C R™ a set such that A\ B is
included in a C1 k-dimensional submanifold of finite k-volume and H*(B) = 0. Let
a function

f: AR

33



54 CHAPTER 5. SCHAEFFER’S CONJECTURE

wich is Lipschitz on A. Then the V f is defined H* almost everywhere on A and

/ V| an* = / HH T )y
A R
Proposition 5.5 (The function h has null gradient on the singular set).

s 1) = B(X)

=0 VX, X' e6s.
xX—x|»0 X' —X]

So from the theorems and propositions above, we can deduce that

+0oo
o n—1 __ n—2 -1
0= /S Vh| dH = /0 W ((h]s) " (V) d

with
Sx = (hls) (),

so if n = 2 we get that H%(S) = 0, and this conclude the proof of the Schaeffer’s
conjecture in R2.

For the proof of Proposition 5.5 we need the following Theorem due to Caffarelli,
see [Caf98]

Definition 5.6 (Thickness of the Coincidence Set). We define the thickness of the
coincidence set {u = 0} in a ball B,(Xy) by

6-(Xo) = % m.d. ({u =0} N B, (Xp))

where the minimum diameter (m.d.) of {u = 0} N B,(Xp) is the infimum of the
distances between pairs of parallel hyperplanes whose strip determined by them
contains it.

Theorem 5.7 (Caffarelli’s Geometric Criterion). For each r > 0, there ezists a
critical thickness oo(r) with oo(r) — 0 as r — 0, such that if

(ST(XO) > 0y (7’)

for some point Xy of the free boundary and for one radius r > 0, then the point X
is reqular. Moreover, this function og(r) only depends on bounds on ||D2u||Loo(Q)

and d(Xo, 02).

Proof of Proposition 5.5. If the proposition is false, then there exists 6 > 0, and
sequences of singular points X}, X; € S such that

h(X}) — M Xg)
| X — X4

>0>0 and |X; — Xj| — 0.
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By equality (5.1) we have in particular
{un(Xy) =0} O Xp,

which (since h is Lipschitz) is improved in

61X — Xi|
{un(Xy) =0} D By (X)) where 7j, = Ll:p—(h)
Let us introduce the following blow-up sequence:
up (Xp) (X, + 11:X)
uF(X) = 5 :
"k
In particular,
Lip(h
w¥ =0 ontheball By(Y;) with [Vy|= 1%( ),
From the geometric criterion (Theorem 5.7), this gives a contradiction with the fact
that 0 is a singular point for u*.
O
We will now prove Proposition 5.2. We first need the following two lemmas.
Lemma 5.8.
{uy =0} C {uy—o} if N <A
Proof. Apply the maximum principle to uy — uy O

Lemma 5.9. For every point Xo € 2, X € 0{uy(x,) = 0}

Proof. This lemma is a consequence of the fact that for Ay = h(Xy) and for every
s> 0:
U +s >0

and from the nondegeneracy we get

2

L\3|~a
S

sup (w45 — ux,+s(Xo)) >
B (Xo)

By continuity of the map (X, \) — ux(X), we get in s = 0:

r2

sup uy, = 7—
BT(XO) ! 2n

wich proves the lemma. O
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Proof of Proposition 5.2. From Lemma 5.9 and the continuity of the map (X, \) —
ux(X), we get
{uy =0} = {h > A}.

To prove that
Hur =0} ={h=A}

we only need (from Lemma 5.10) to prove that
Huy =0} C {h= A}

which is a consequence of
8{U)\ = 0} C {h > )\}

and the fact that h is Lipschitz (Proposition 5.1) which avoids the values h > \.
This ends the proof of Proposition 5.2. ]

Now we will prove that A is continuous, and after that, we prove that it is actually
Lipschitz, but we need continuity first.

Proposition 5.10. The function h is continuous.

Proof. We will here introduce a perturbation argument which will insure easily the
continuity of h. We will denote by n > 0 the parameter of the perturbation:

uy = (1 —=nA\)uy.
For n > 0 small enough, the maximum principle implies
u§§u§, on Q if A<\,

Now let us assume that h is not continuous in Xy € 2. Then there exist § > 0
and a sequence of points

X — Xo with |h(Xg) — h(Xo)| >0 > 0.
If h(X%) — h(Xo) < =4, then let

up(x,) (Xo + [ Xi — Xo|X)

() o= (1 - mh() R <

up(x,)(Xo + [ Xg — Xo[X)
| Xy — Xo|?
Because by Lemma 5.10 Xj is a point of the free boundary @{uh(xo) = 0}, by

Classification of blow-ups we know that the blow-up limit v(f satisfies with \; =

h(Xo):

< oB(X) = (1 — nh(X))

$tX-Q1-X >0 with tr Q=1
vi(X) =< or
%(max((X, v1),0))%.
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The sequence vg has also a blow-up limit:
vy defined on R".

Then if we introduce a blow-down sequence with y — +o00:

Ug(,uX) Op

w(X) = o (X) = v{(X).

Also the blow-down limit v5° satisfies with Ay = lim A(X}) < Ay — 0:

X IX Q- X >0 with tr@Qo=1
> (X)=qor

1 _77)\21)2 . )
§(max(<X, v2),0))=.

The fact that
1—nla>1-—n\

gives a contradiction with the inequality

03 < v =) on R"

We get a similar contradiction with h(X}) — h(Xg) > 9. O

The last thing to prove in order to conclude the proof of the Schaeffer’s conjecture
in R? is that & is Lipschitz.

Proposition 5.11. The function h is Lipschitz.

To prove that h is Lipschitz, we need to introduce the following family of functions
for 6 > 0 and ¢ > 0:

F(X) = swp uys(Y)
Y €E€B.s(X)

which are subsolutions (as it will be proved below) to the obstacle problem (1.4)
on

Q(—sé) = {X €, d(X, 8(2) > 65}

For 0 > 0 fixed, by a continuity method varying the parameter ¢ > 0, we will
prove that these subsolutions stay under the solution w) until some critical value
ge > 0:

1

IVl @a )

v* <wuy, on Qesy for 0<e<ec = (5.2)

For € = ¢, this implies
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d({uy = 0}, {ur—s > 0}) > ec0.
In particular, if X' € 9{u) =0} and X € d{u)_s = 0}, then

o< B —h(X) _ 1

- X=X T e
Now as & — 0, we get
MX") — (X
0 < limsup w < |[Vua| e (a0)-
hx)shix) X =X
h(X")—
h(X) =X

where we have used the continuity of the map (X, \) — Vuy(X). In particular,

we conclude that

Lip(h) < sup  |Vuplr=(a0) = [Vuc|r~(a0) < +o0,
A€[0,400)

where the function us, satisfies

Aus =1 on €,
Uoo = 0 on 0f).

By definition of v%, if X € 0Q_.¢), there exists Xo € J€ such that

|X2—X1|:€(5 and [Xl,XQ]Cﬁ\Q(_E(;).

Moreover,
v (X1) = sup  up_g(Y)
YeB.s(X1)

<\AN—90

=uy(X2) -0

= ux(X1) — 0 + (ux(X2) — ux(X1))

<up(Xp) =4 (1 - 5|VUA|L°°(Q\Q(55))> :
Consequently,

1

(5.3)
IVurlpe@e s

v° <uy on 0Q_.5) while e<e.=

Here the fact that v° is a subsolution for the obstacle problem means the following.
Lemma 5.12. The function v¢ satisfies
Av >1 on {v° >0} N Q)

& >0
if v5(Xo) =0, then v*(Xo+ X) < CX? with C = %|V2U|Loo(g).
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Now let us consider the open set where v° is bigger than wy:

w = {v° > up} N Q).

We want to prove that w = () while € < .. Let us assume on the contrary that

w # 0. Then from Lemma 5.12 and the maximum principle, we deduce that the
maximum

max(v" —uy) >0
w

is reached on

Ow U ((0{uy =0}) Nw).
But

ow C (39(_55)) U {v® =uy}
and from (5.3) we get

v —uy <0 ondw while e<e..

We can resume what we have proved in the following.

Lemma 5.13.

{vg<u)\ on 09 _gs)

. A while ¢ < e,.
maxq__, (v° — uy) < maxgpy,—oy v

We now apply a continuity method in three steps:
Step 1: Initialization. By the continuity of h (Proposition 5.10) and equality

(5.2), there exists an €1 > 0 small enough (and in particular smaller than e.) such
that

d({U)\ = 0}, {u,\,g > O}) > £10.

In particular, we get that

v®=0 on Huy=0} for e<ey,

and from Lemma 5.13, we have

v* <wuy, on Q_esy for e<er.

Step 2: Continuation. Let

" =sup {5' €[0,ec), v° <uy on Qg4 forall e < 5’} )

In particular,
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v© <uy on Q(_evs)-

If e* < e, then from Lemma 4.13 and the maximum principle, we get
v$ <uy on {vs* > O} N Q(ex5)- (5.4)
On the other hand, we have
{v =0} > {ur=0}.
We will prove that

H{uy=0}Na{v" >0} #£0. (5.5)

If not, we have

d (8{u)\ = 0}, {UE* > O}) =n>0,
and then

) = s uns(Y)
YGB(€*+S>5(X)

= sup sup  un—s(Y")
YeBs(X)Y'€B+5(Y)

= sup o5 (V).
YeB;ss(X)

Then
¥ =0 on &{uy=0} if s<g and ¢+ s <e,

which by Lemma 5.13 would give a contradiction to the definition of £*.
Then (5.5) is true and there exists

X3 € 0{uy=0}N0o{v" >0}.
Moreover, there exists
Xy € H{uy_s =0} such that |Xy — X3| =£"6.
As a consequence,

¥ >0 on Beg(Xy).

Using Lemma 5.13, we can resume the properties of uy — v on the ball Be+5(X4)
by
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Auy —v°) <0 on B..5(Xy)

Uy — 1}6* >0 on B€*5(X4)

ux(X3) = v (X3) =0 with X3 € dB.-5(Xy).
The Hopf lemma implies

d *
d—(u)\ —v° )(X3) >0 with n=
n

X3 — Xy
| X3 — X4|'

This is in contradiction with the fact that the nonnegative functions uy and v¢
satisfy

Vuy(X3) =0 because uy € C1!
Voe (X3) =0 because Ve (X3+X)<CX2
Step 3: Conclusion. As a consequence, we get

e =e,.

Proof of Lemma 5.12. This lemma is a straightforward consequence of the
following.

Lemma 5.14 ((T. Kato [K72], Variant of Kato’s Inequality)). Let two Lipschitz
functions u; for i = 1,2, which satisfy u; > 0 on w, Au; > 0 on w, and

Au; >1 on{u; >0} Nw. (5.6)

Then v = sup(uy, uz) satisfies

Av>1 on{v>0}Nuw.

And Lemma 5.14 can be proved using the original mollification argument of T.
Kato in [K72]. O
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