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Abstract

In the present thesis, we study the regularity of minimizers of two
functionals.

The first one is the perimeter. A set of locally finite perimeter F
in R™*! is, roughly speaking, a set that supports a divergence theorem,
where the boundary measure, that is called perimeter measure, is the
n-dimensional Hausdorff measure restricted to a thiner part of JE: the
reduced boundary 0*F.

The second one is an energy whose stationary points model the equi-
librium state of incompressible fluids in absence of gravity: Ag(E) :=
H™(O*ENRYT) — cos(9)H™ (0" E NR™), where R’ is the upper half-
space with boundary R™, F is a set of locally finite perimeter in erfl,
and 0 is the contact angle between 9*E N R’} and R™ (whenever E is
a stationary point for Ay).

In both cases it was proved that, if F is a minimizer, 0F N H is a
smooth hypersurface away from a closed set 3(E), called the singular set
of E. Here H = R™t! when E minimizes the perimeter, and H = Rﬁ“
when E minimizes A. In both cases the Federer’s dimension reduction
principle allows to relate the Hausdorff dimension of the singular set to
the analysis of minimizing cones that are smooth away from the ori-
gin. Thus, in this thesis we focus on the study of cones, and we prove
the Simons’ Theorem, obtaining as a consequence that X(F) is empty
whenever F is a perimeter minimizer and n < 6.

Then, we follow the work of Chodosh, Edelen and Li in [2], proving,
for a minimizer E of Ay, that X(F) is empty when n < 3, when n = 4
and 0 is small enough, and when n < 6 and 6 is close enough to 7.

Moreover, we give a new proof of the case n = 3, based on the
analogous work of Jerison and Savin (see [3]) about the regularity of
minimizers of the Alt-Caffarelli functional. Assuming the additional hy-
pothesis that F is the region below the graph of a Lipschitz function, we
think that would be possible to apply the same arguments also in the
case n = 4 for small contact angles.

il
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Summary

In the first Chapter, we start by introducing the theory of sets of locally finite
perimeter, recalling their basic properties, and the definition of perimeter mini-
mizer. We then prove the first and second variation formulae for the perimeter.
We obtain that, for a smooth perimeter minimizer F with boundary 0F, OF
has zero mean curvature, and F satisfies a stability inequality (1.7). The sta-
bility inequality carries the information of A, i.e. the tangential gradient of the
external unit normal to ££. We briefly explain that the Federer’s dimension re-
duction argument, together with the regularity of the reduced bounbdary 0*F
of a perimeter minimizer F, allow us to focus on the study of the non-existence
of open cones minimizing the perimeter with an isolated singularity. In this
way, we can estimate the Hausdorff dimension of the singular set of a mini-
mizer. We then prove the Simons’ inequality (1.3.9) for cones with an isolated
singularity, and with zero mean curvature at the boundary. We finally prove
the Simons’ Theorem(1.3.10), about the non existence in R” (2 <n < 7), of
smooth cones that minimize the perimeter, and with an isolated singularity.
The strategy of this proof is to plug a competitor depending on |A| in the
stability inequality, and then to use the Simons’ inequality in order to prove
that |A| must be zero, and thus the cone must have been an half-space.

In the second Chapter we introduce the capillary functional (2.1) A?, de-
fined for sets of locally finite perimeter in ]R?fl. Here 6 will be the fixed contact
angle that smooth minimizers of A% form with R” := 8R7fr+1. We compute the
first and the second variation of this functional, and we derive the stationary
conditions and a stability inequality for smooth minimizers. Also in this case,
in order to estimate the Hausdorff dimension of the singular set of a smooth
minimizer, it can be proved that is sufficient to look at smooth cones with an
isolated singularity.

We present the results obtained by Edelen, Chodosh, and Li in [2]. Here,
the non-existence of smooth minimizing cones depends not only on the dimen-
sion, but also on the contact angle 6. Again, the strategy is to prove that any
smooth cone with an isolated singularity that minimizes A? satisfies |A| = 0.

We prove, in dimension n = 3, that for any contact angle 6, there are no
smooth minimizing cones with an isolated singularity. The arguments in this
dimension use the stability inequality, like in the proof of Simons’ Theorem.
However, here is crucial the use of Gauss-Bonnet theorem and complex anal-
ysis, that are applicable only because the intersection of a cone with S® has
dimension 2.

Also in dimension n < 6, we prove the non-existence of smooth minimizing
cones through the stability inequality. But in this case, we have the additional
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constraint of choosing angles § € (5 — €, 5 + ¢€), where € is a small constant
depending on the dimension n only.

Finally, in dimension n = 4, we deal with contact angles 6 close to 0.
It is interesting how, in this case, Edelen, Chodosh, and Li, don’t use the
stability inequality. Instead, they find a connection, for small angles, between
minimizers of A? in R®, and minimizers of the Alt-Caffarelli functional in
R*. They prove that, for small angles #, any smooth cone minimizing A’
can be written as a graph of a Lipschitz function over R™. They prove also
that, for any sequence §; of smooth cones minimizing A%, and u; : R* — R
being the Lipschitz functions such that 9Q; N R’ = graph(u;).{u > 0}, the
rescaled m;fﬁ converges to a one-homogeneus minimizer of the Alt-Caffarelli
functional in R*. Thanks to the work of Jerison and Savin in [3], the only one-
homogeneus minimizers of the Alt-Caffarelli functional in dimension 4 are flat
solutions. Using this, Edelen, Chodosh, and Li prove that, for small angles,
also smooth minimizing cones of A? are flat.

In [3], Jerison and Savin emulate in some sense the techniques used in deal-
ing with smooth cones with an isolated singularity minimizing some functional.
Namely, they have a stability inequality, they have stationary conditions, and
they have an interior inequality similar to the Simons’ inequality. Also in their
case there is a boundary term, as well as in the stability inequality for A?(see
(2.21)). They provide a boundary inequality in order to deal with their bound-
ary term. They then use a competitor in the stability inequality depending
on a power of |V2u/| in dimension n = 3, and depending on a function of the
eigenvalues of V2u in dimension n = 4. Here u is a one-homogeneus minimizer,
and |V2u| can be thought as the analogous of | A|.

Since this way to deal with the problem seemed more natural to us, we
adapted their ideas to the context of A?. Following this path, we were able
to provide a new proof of the non-existence of smooth cones minimizers of
A? in ]Ri“, when n = 3. If we assume that the smooth cone is the region
below a graph of a Lipschitz function, making the comparison with the work
of Jerison and Savin, we think that deal with the case n = 4 is just a matter of
computation. Namely, we propose a competitor that should work in dimension
n = 4, and we refer to [3| for a proof.



CHAPTER

Regularity of perimeter
minimizers

1.1 Definitions and basic properties

Here we define sets of locally finite perimeter and some of their properties.
Our main reference for this Chapter is [1].

Let E C R” be a Lebesgue measurable set. We say that E is a set of locally
finite perimeter if the real valued functional

T — /diVT, T € C(R™;R")
E

is bounded, with respect to the uniform norm on CZ°(B(0, R);R™), for any
R > 0. Using the Riesz representation Theorem, it is immediate to see that
E has locally finite perimeter if and only if there exists a unique R"-valued
Radon measure pg such that

/diVT = /T -dug, VT e C°(R™;R").
E Rn

We say that pg is the Gauss-Green measure of E, and we call its total variation
|ip| the perimeter measure of E, that will be denoted by

P(E F) = |up|(F),  P(E)=|ps|(R"),
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for any FF C R™. We call P(E) the perimeter of F, and P(FE; F) the relative
perimeter of E in F. If E is an open set with C'!'—boundary, the divergence
theorem says that up = vgH" 'LOFE, where vg is the outer unit normal of E,
and H" ! is the (n — 1)—dimensional Hausdorff measure. For a general set of
locally finite perimeter, we always have

Spt(#E) c aE?
but we can define a unit normal only on a portion of the boundary.

Definition 1.1.1. The reduced boundary of F, that we denote 0*F), is the

set of those x € sptug such that the limit 7nl_i)r(1)1+ % =: vg(x) exists and

belongs to S”~!. We call vg the measure-theoretic outer unit normal to E.

As one would expect, sets of locally finite perimeter in R are not of interest,
as they are just a countable union of intervals.

Proposition 1.1.2. A Lebesque measurable set E C R is of locally finite
perimeter if and only if it is equivalent to a countable union of open intervals
lying at mutually positive distance.

In the previous statement we used the following definition.

Definition 1.1.3. Let F and E’ two Lebesgue measurable sets. We say that
E is equivalent to E' if
|[EAE'| = 0.

Remark 1.1.4. Let F and E’ be two equivalent sets. Then, E is of locally
finite perimeter if and only if £’ is of locally finite perimeter. In this case,

HE = HE’-

There exists a powerful carachterization of ug and vg that is given by the
De Giorgi’s structure theory. We summarize it here with the next theorem.

Theorem 1.1.5. If E is a set of locally finite perimeter, O*E is (n — 1)-
rectifiable, and we have

pg = vEH L0 E, lpup| = H"LLO*E.

Moreover, if x € 0*E, then vg(x) is orthogonal to O*FE at x, in the sense that
there is the weakly*-convergence of measures

[ N
HL (M> 2w g ()t asrT — 0,

r
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and it is outer to E at x, in the sense that there is the local convergence of sets

Ei ocC
xl—>{y€Rn:y-VE(x)§0} asr— 07",

r

In the previous Theorem, by local convergence of a sequence of sets F; e,
F, we mean that the sequence (Lg,);eny converges to 1 in Lj (R"). An
important property of sets of locally finite perimeter is the lower semicontinuity

of perimeter.

Proposition 1.1.6. If {Ey} is a sequence of sets of locally finite perimeter in
R"™, with
B, E,  limsup P(Ej; K) < o,
h—o0
for any compact set K in R™, then E 1is of locally finite perimeter in R™,

WE), X up and, for every open set A C R", we have
P(E; A) <liminf P(E}y; A).
h—o0

Sets of locally finite perimeter are closed for union and intersection, and
satisfy a compactness theorem. Moreover, the intersection with an half-space
decreases the perimeter.

Lemma 1.1.7. If E and F are sets of locally finite perimeter in R™, then so
are FUF and ENF, and, for A CR"™ open,

P(EUF;A)+P(ENF;A) < P(E;A)+ P(F;A).
Lemma 1.1.8. Let E be a set of finite perimeter and let e € S™. Then, for
almost every t € R, EN{x-e <t} is a set of finite perimeter, and
P(ENn{z-e<t}) < P(E)
Theorem 1.1.9. If {Ep,}nen are sets of locally finite perimeter in R™ with

sup P(Ep; Br) < oo, VR > 0,
heN

then there exists E of locally finite perimeter such that, up to a subsequence

l *
Eh i‘; E7 HE;, — UE-

Notice that this version of the compactness theorem gives only the weak™
convergence of the measures g, and don’t imply the convergence of the total
variations |ug|.

We give now the notion of perimeter minimizer.
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Definition 1.1.10 (Perimeter minimizer). Let E be a set of locally finite
perimeter in R™ that satisfies spt(ug) = OE, n > 2, and let A be an open set.
We say that E is a perimeter minimizer in A if, for any r > 0, any x € R",
and any set of locally finite perimeter F' that sarisfies EAF CC B(x,r) N A,
the following inequality holds

P(E; B(z,7)) < P(F; B(x,7)).
If A =R", we say that F is a global perimeter minimizer, or just a perimeter
minimizer.

Remark 1.1.11. The assumption spt(ug) = OF is not restrictive. Indeed, it
can be proven that, for any set of locally finite perimeter F, there exists a set
of locally finite perimeter E’ that is equivalent to F, and such that

OF" = spt(ug) = spt(pgr).

1.2 First and Second Variation of Perimeter

If E' is a perimeter minimizer in an open set A, the perimeter decreases under
small perturbations of F in a compact subset of A. We can perform the per-
turbations continuously in the time ¢, and then take first and second derivative
in ¢ in order to obtain stationarity and stability conditions for E.

Definition 1.2.1. Let A C R" be an open set, let € > 0, and let (fi))<c be
a one parameter family of diffeomorphisms. We say that (f;)y<. is a local
variation in A if there exists a compact subset K of A such that

fo(z) = =z, Ve eR",

{zr eR": fi(x) £ 2} C K, Vit <e.
If (ft))<c is a local variation in A, we say that T'(z) := %(az, 0) is the initial
velocity of (fi))¢<e-

Remark 1.2.2. If (f;)<c is a local variation in A, its initial velocity T" has
compact supoport in A, fi(A) = A, and, for any £ C R", fy(F)AE CC A.
Moreover, the following Taylor’s expansions holds uniformly in z € R",

fi(x) =z +tT(x) + O(t?),  Vfi(z)=Id+tVT(x) +O0(*),  (1.1)

where with VT'(z) we denote the matrix representing the differential of 7" in
x with respect to the canonical basis of R™.
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We say that a set of locally finite perimeter F is stationary for perimeter
in an open bounded set A if sptug = 0F and

d
& P(uB); A),_, =0, (12)
for any (f:)j<c local variation in A. If, for any local variation in A, holds also

d2
S PUUE) Ay 2 0, (13)

we say that F is stable for perimeter in A.

Remark 1.2.3. If F is a perimeter minimizer in A, and (f¢)j<e is a local
variation in A, since fi(E)AE CC A, we have that P(E;A) < P(fi(E); A).
Thus, if we knew that any path P(fi(E); A) were regular enough we could
conclude that F is stationary and stable for the perimeter in A. We will prove
this in the case of F open set with smooth boundary.

Conversely, if we start from 7' € C°(A), there are two canonycal ways to
construct a local variation that has T' has initial velocity.
The first method consists of setting

fi(x) = x +tT(z),

tho only non trivial property to check is that f; is a diffeomorphism for ¢ small
enough. That follows by using the inverse function theorem and the Neumann
series. Through this chapter we will use only the previous method, but later
we will need also to consider a local variation given by the flow of an ODE:

0
ot (tvr) - T(f(t,a:)),

f(0,z) = x.

In order to compute the first and the second variation of the perimeter we
need a Lemma first.

Lemma 1.2.4. Let Z be a real valued n X n-matriz. Then

(Id+tZ)"t =1d —tZ +t22% + O(t3),
2
det(Id +tZ) =1+ tTr(Z) + %(Tr(Z)Q — Tr(Z%) + O(t%)
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Proof. The first equation follows since, for ¢ small enough, the Neumann series
gives (Id+t2)~1 = Y (—tZ)".
1€N
In order to prove the second equation, let (A;)?_; the complex eigenvalues
of Z, and let P € GL(n,C) such that Y := PZP~! is upper triangular. Thus

det(Id+t2) = [JA+tA) =1+t > _N+12> A+ O(F).

i=1 i=1 i<j

n
Notice now that > \; = Tr(Z), and that

1=1
PIROYE BN A\ — & zn:ﬁ = 1(Tr(Z)2 — Tr(Y?))
A R X A ’
1<J 1,j=1 =1
and Tr(Y?) = Tr(PZ%2P~') = Tr(Z?), ending the proof. O

We are now ready to compute the first variation of perimeter.

Theorem 1.2.5 (First variation of perimeter). Let A be an open bounded set
i R™, E be an open set with smooth boundary in A, and (ft)|,5‘<6 be a local
variation in A with initial velocity T. Then,

P(fi(E); A) = P(E; A) +t / divpT dH™ ' 4 O(t?), (1.4)
oF

where divgT (z) := divp(x) — vg(x) - VT (x)vg(z) is the boundary divergence
of T on E.

Proof. Let us call g := ffl. Notice that f;(E) is an open set with boundary
0fi(E) = fi(OF) that is smooth in A = f;(A), and with outer normal given
by
*
(Vo) vilaa)
Vft(E)(x) = ‘<

V(o)) vetanta))|

Thus, by the tangential area formula,

P(fi(E); A) = / ldn™ ! = / Jefi(z) dH" (),

ft(OENA) OENA
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where Jg fi(z) is the tangential jacobian on OF, given by Jg fi(x) := | det(4)|,
where A is the (n — 1) X (n — 1)-matrix that represents the linear application
dfi(v) : Tor(x) — Ty, op)(z) with respect to any orthonormal basis of Tp()
and any orthonormal basis of T, (pg)(z). Fix such two orthonormal basis and
complete them, with vg(z) and vy(g)(x), to orthonormal basis of R”. Thus,
in those basis, df(z) : R™ — R" is given by

[ A S

0.0 | Vh@)ve(r) - St

IV fi(@) (@)

[ A ,
\0.. 0 [ Vi) vp(@)] ")

that means Jf(2)|V fi(x) *ve(x)| = Jg fi(x).
Using (1.1) and Lemma 1.2.4 we can write

Jfi(z) = det(Id + t(VT(z) + O(t))) = 1 + tdivT + O(t?),

IV fie(x) " ve(z)] = [(Id + (VT + O(t)) " v ()]
= |vp(z) — tVT*vg(z) + O(t%))
=1—vp(z) - VT*ve(z) + O(t?)
=1—tvg(z) - VIve(z) + O(t?),

T)+

where we used that vg(x) = 1, and that the estimates are uniform in x € R".
Putting the previous equations together we get

Jpfi(r) =1+ tdiveT(x) + O(t?),
and an integration over F N A ends the proof. O

Remark 1.2.6. We could have stated the previous theorem for a generic E of
locally finite perimeter, and the proof is the same, but we would have needed
an area formula for set of locally finite perimeter. However, since we are going
to work only with sets that are regular up to a point, the statement above is
sufficient for our purpose.

We will make use in particular of the following Corollary:
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Corollary 1.2.7. Let E be an open set with smooth boundary. If E is a
perimeter minimizer in the open set A, then

H(z) =0, Ve € OEN A, (1.5)
where H is the mean curvature of OF.

Proof. Take a smooth vector field T' that has compact support in A, let R >
0 such that spt(T) C B(0,R) N A, and let (ft)y<e be a local variation in
B(0,R) N A with initial velocity 7. Thanks to Theorem 1.2.5 and Remark
1.2.3 this means

/ divgT dH" ' =0,
OF
and the tangential divergence Theorem implies

/HI/E TdH" =0,
OF

thus H = 0. O]

We are going now to compute the second variation of perimeter. Although
our assumption of smoothness was not necessary in Theorem 1.2.5, now we
want to take dervatives of the outer normal of a set of locally finite perimeter
E, therefore the request of some regularity on the boundary is not removable.

Let E be an open set with smooth boundary in an open set A C R™. By
the existence of a tubular neighbourhood of 0E N A in A, we can deduce that
there is an open set A’ with ANOFE C A’ C A such that the signed distance
function sg : R" - R of F

() dist(z, 0F), ze€R"\ E,
sp(r) =
F —dist(x,0F), xeE,

satisfies sp € C*°(A’). Let us define
NE:VSE, AE:V28E, OnA/.

Notice that Ng is an extension of the outer unit normal vg and satisfies
|Ng| = 1, while Ag is a symmetric matrix that we call the second funda-
mental form of F. Notice that the trace of Ag is the mean curvature of OF,
and that the squared norm of the second fundamental form |A[* = EA?J- is
0.

invariant under change of coordinates, since |A|? = Tr(A2).
We compute now the second variation of perimeter under local variations
with initial velocity proportional to Ng.
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Theorem 1.2.8 (Second variation of perimeter). Let E be an open set with
smooth boundary in the open set A, let B C A be open and bounded, and let
¢ € CX(B). If (ft)y<e is a local variation with initial velocity T = (Ng €
C*(B;R"™), then
d 2 2 2y 2 39 n—1
GaPGERB), = [ V6CP + (- [AsP)Pan. (L0)
O

In particular, if E is a perimeter minimizer in A, then

/ V(P — A aH > 0, (1.7)
or

Proof. As in the proof of Theorem 1.2.5, we have

P(f{(E);B) = / JHIV T e dH (1.8)

BNOE

and, by the Theorem of differentiation under the integral sign, we get that the
function ¢t — P(f:(E); B) is smooth in a neighbourhood of zero. In order to
ease the notation we assume that fi(z) = x4+ Tx. The following relations hold

VT = (Ag + Ng ® V(,
(VT)? = (PA% + ((Ng ® VO Ag + (Ng - VO Ng ® V¢,
Tv(VT) =(Hg + Ng - V(,
Te((VT)?) = C|Agl* + (NE - VC)?
where we used the notation v ® w := vw* for any v,w € R", we used the
relations
Ap(Ng®@w) = (AgNg) @w =0® w =0,
(v ®@w)? = (vw*)(vw*) = v(wv)w* = (v-w) w,

Tr(v ® w) :Zvl-wi =v-w,
i

and we used that Ag is symmetric in computing

(Ng - V()Ag = NEV(*Ap = Ng(AgV()*,
Tr((Ng - V() Ag) = Ng - (AgV() = NgApV( = (ApNg)*V(=0-V(=0.
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Now, by using Lemma 1.2.4, we can write

t?
Jfy = det(Id +tVT) = 1 +tTr(VT) + §(Tr(VT)2 — Tr(VT?) + O(t?)

t2
=1+t(CHg + Ng- V() + 5(521{% — (Y Ag|* + 2CHENE - V() + O(t%).
Concerning the other factor in Jg fi,
(Vfi) *Ng = (Id+t(VT)*) 'Ng =
= Ng — tVT*Ng + t*(VT*)* Ng + O(t?).

Since |Ng| = 1, if we call v(t) = (V f;) *Ng, we can compute

)
0] = 14007 O+ (15 70)) 0 + o)

=1—tNg-VT*Ng+
t2
+ 5 (2NE - (VI*)?Ng + |VT*Ng|? + —(Ng - VT*Ng)?) + O(t?).

We can make more explicit this espression using the previous relations:

VT*Ng = V¢,

Ng - (VT*)2Ng = (Ng - ApV¢ + (V¢ - Ng)?
= (V(- Ng)?,

IVe(® = V¢ = V¢ - Nl

Therefore, we can finally multiply the develops of Jf; and of |(V fi)™*Ng|,
th|(Vft)_*NE’ =1+ tCHE—i-
2
+ 5 (VeC* + C(HE — |Apl") + O(F),

and, since this develop is uniform in z € R™, an integration ends the proof. [

1.3 Analysis of cones

We first recall the definition of cone.

Definition 1.3.1. An open set 2 C R” is a cone with vertex at 0 if , for any
x € Qand any A > 0, Az € Q. We say that the cone is smooth if it has smooth
boundary in R™ \ 0.
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The first part of this section is devoted to explain why we are interested in
studying cones.

It can be proven the following powerful regularity Theorem for perimeter
minimizers

Theorem 1.3.2. If A C R"” is an open set, and E is a perimeter minimizer
m A, then ANO*E is a smooth hypersurface.

What is left of the boundary of E' is the so-called singular set
Y(E;A):=AN(OE\ 0*E).
Definition 1.3.3. If a cone Q2 C R" is a perimeter minimizer such that
X(Q) = Z(;R") #0,

we say that  is a singular minimizing cone.
If
£(€) = {0},

we say that {2 is a smooth minimizing cone.

The analysis of the singular set is related to the study of singular minimiz-
ing cones in R™. Indeed, whenever x is a singular point, the rescalings @
of F at x converge, as 7 — 0, to a cone K, which is singular at 0, and is a
perimeter minimizer in R™ .

Theorem 1.3.4. Let E be a perimeter minimizer in an open set A C R", let
x € X(E;A), and let, forr >0, By, = ET_CC
Then there exists a singular minimizing cone @ C R™, such that, up to a

subsequence

loc

E.’E,’f‘ — Q? ILLE.’I),T L IU’Q’ ’MET,T| i |/'LQ” asr — O

A singular minimizing cone may have more singular points than 0. This
issue is solved by the so called Federer’s dimension reduction principle.

Theorem 1.3.5 (Dimension reduction principle). Let Q be a singular mini-
mizing cone in R™, and let xy € X(K), xg # 0. Then, up to a subsequence and

up to a rotation,

l
on,ri(foR, asr — 0,

where F is a singular minimizing cone in R~
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We need also a Lemma that gives a lower bound on the dimensions in
which there could exist a singular cone Q with () # {0}.

Lemma 1.3.6. If Q is a singular minimizing cone in R"™, o € X(Q), and
xg # 0, then n > 3.

The last Theorems and the last Lemma allow to relate the Hausdorff di-
mension of the singular sets to the analysis of the perimeter minimizing cones
in R™. Precisely, Federer proved the following Theorem

Theorem 1.3.7. There is a critical dimension n* (defined as the first dimen-
sion n in which there is a smooth minimizing cone), such that

e if n < n*, then the singular set X(E;A) is empty for any perimeter
minimizer E in an open set A C R";

e if n =n*, then for any perimeter minimizer E in an open set A C R",
the singular set X(F; A) is a discrete set of points;

e if n. > n*, then for any perimeter minimizer E in an open set A C R",
the Hausdorff dimension of X(FE; A) is at most n — n*, that is:

HVHE(S(E; A) =0 for every e > 0.

Proof. We prove just the first part of the statement. If n* = 1,2 there is
nothing to prove. If 2 < n < n*, let £ C R" a perimeter minimizer in some
open set A. If there exists x € ¥(FE; A), then, by Theorem 1.3.4, there exists a
singular minimizing cone  in R™. Since n < n*, there exists x € X(2) \ {0}.
Then, by Lemma 1.3.6, n > 3. By Theorem 1.3.5, there exists a singular
minimizing cone in R"~!. Since 2 < n—1 < n*, we can iterate this construction
a finite number of times, getting n > n*, that is a contradiction. O

For the rest of this section 2 will be always a smooth cone.

It is known that if M is a Riemannian manifold and p € M, there exists
a coordinate system around p such that the metric is the identity at the first
order in p. In order to obtain more manageable expressions for the objects
that we want to deal with, we will describe an explicit such coordinate system.
If xzg € 02\ {0}, up to a rotation and a translation, we can assume that xg
is proportional to e; and that, locally in xg, 2 is the region above the graph
of a smooth function u : R*™! D> U — R such that u(zg) = 0, Vu(zg) = 0,
V2u(zo) is dyagonal and such that u is 1-homogeneus in the ej-direction at
xo, where ey is the first vector of the canonical basis of R™.
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Lemma 1.3.8. Let Q and u as above. Then
Vu(x),—1
v, u(w)) = ~ D
V14 |Vu(z)?
g(z,u(x)) = Id+ Vu ® Vu,

—1x72

1
———==9 Vu,
V14 |Vul?

0;A 0 Y(z0,0) = VZu;(x0), 1<n
9;0;A 0 (z0,0) = —Vu; - Vu;V3u(zo) — (Vu; ® Vuj + Vuj ®@ V) Vu(zo) + Vi (z0),

i particular

HQ(:L'()) = AU(O),
| Aal?(z0) = [V2u(0)[*.

Proof. w induces a parametrization of d§2 given by ¥ (z) := (z,u(z)), thus
Ty (2)02 = Span{(e;, u;(v))} = (Vu(z), —1)+, and the sign of the outer normal
is fixed provided that € is the region above the graph of u. Since g[v;, ;] =
Yi -y = 05 +uug, g = Id+ Vu @ Vu. Let A be the matrix representing,
in the coordinates induced by v, the scalar product induced by the symmetric
endomorphism dvq(v(x)) : Tp0Q — T,0Q. It is well known that A = g1 A4,
and

Vi Ay = ;- (g o );

(Vuy;,0) (Vu, -1)
= (e, u;) - —Vu; - Vu
(eir) (\/1 + [Vul? T+ |vu\2)3/2)
_ Uij
V1+[Vaul?
thus A = g_1V2u\/ﬁ. Moreover, by the Neumann series, and taking into

account that Vu(zg) =0,
gt =1d - Vu® Vu+ |[Vu*Vu @ Vu + o(|Vu[?),

noticing that first and second derivatives of o(|Vu|?(z)) at ¢ are 0. Finally,

9:0: 1
1+ [ Vul?

Taking the derivatives of A at x¢ and taking into account the previous esti-
mates end the proof. O

(.CE()) = —8i(Vu]~ . Vu(l + ]Vu|2)’3/2)(a:0) = —VUJ‘ - Vu,;.

1<n
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Theorem 1.3.9 (Simons inequality). Let Q be an open cone with zero mean
curvature. Then,

2|14
jz2 7

1
A" = [VaalAll” + 5 ool A > (1.9)

whenever |Al(xg) # 0

Proof. Take xy and u as above. Notice that it is sufficient to prove the thesis
at zg under the coordinates induced by u. Computing and using that A is
symmetric,

VoolAl* (z, u(z Za (A7 o ) (@) (eq, wi (@) (1 + ui(2)[*) 7,

thus,
VaalAl*(z0) = V(|A]? 0 1)(z0),
and

n

1
BanlAf(z0) = 3 s 0i(VAetly o (1A 0 91 + s )

= A(JA[? o 9)(x0),
where we used that u;(x9) = 0, that 9j(g o ¢)(zo) = 0, that
0;(/det(g 0 ) (o) = d1an/det()[0;(g © 1) (o), and that

0;(1 + Juj?)~ (o) = —2ujuz5(z0) (1 + |ugl?(zo)) 2.
Using the previous Lemma, we can compute

VaolAl[*(z0) = V(IA]? o 9) [ (x0)

4!A\2

= W Z |05(Tr(A* 0 9))[?
=1

_ |A1’2 Z(Tr(AaiA))Q(afo)

3

Ijl SO (Te(V2u20)) ()

=1
( § u]k“z]k) .%'(]

||M:
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and
2, n
W(w )= Tr(Ad;i(Aov)) +[0:(A o) (x)
i=1
— Z Z U?jk(-’ro)+
i=1 j,k=1

n
=) uf |Vl = 2Te(Vu; @ Vg (VPu)?) + Tr(Vui V).
i=1
Taking into account that V2u(xg) is diagonal, that V2u(zo) = A(zo), and
n
that, for any two matrices B and C holds the equality Tr(BC) = > B;;Cy;,

5, k=1
we can write

A AQOw
(||2)( |A|4 QZU’M + Z Wigjj U+

1,j=1
2
+ Z Uik

i k=1

Notice now that Tr(A o) = H o1 is identically zero on the domain of
definition of v, and in particular, using again the previous Lemma and the
fact that V2u(zo) is diagonal, we get

0= 0;0;Tr(A o) (zo) = Tr(9;0;(A o ¥))(z0)
= —|VUJ"2AU($[)) — QU:;-]- + Aujj
= —2u§-j + A’Lij.

Using this relation, we obtain

n n
_ 4 oy
-2 E :uzz + E UiijjUjj = —2 E Uj; + E :AUJJUJ]
ij=1 i=1 j=1
n n
_ 4 4 _
—725 uii+25 u;; =0,
i—1 =1

thus

20
A(‘A| ’L/J)(.Z‘() _ |A|4 Z uz]k

2
i,7,k=1
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Therefore, the left hand side of the (1.9) is equal to

n n n 2
> u - Mlg Z( > ujk“ijk) (wo) =

n n n 2
= A|_2< Z g — Z( Z ujk“ijk’> )

i7j7k7T7l:1 =1 ],kzl

Notice now that, relabeling the indexes, holds

i=1 “jk=1 k=1 Vij=1
n n n
= E E Wik Wig E UplkUrls
k=11i,j=1 ri=1
and a simple computation shows that
n
2 2 1 9
(uijkurl - uijkuijurlkurl) = 5 (Urluz‘jk — uijule) .
1,5,k,r,l=1 1,5,k,7,1

We can then roughly estimate

n
Z (Wi — Wijtpg)® > Z (w1 — u1jtng)?

n
i,5,k,r,0 k=1j,rl=2
n

n n n
2 2
+ (it — wintior)® + Y (uaguijn — wijti)
k=114rl=2 k=11,5,1=2
n n n n
2 2
+ Z Z (ur1uije — tijurig)” = 4 Z Z (U1 Ui — WijUrik)
k=11,j,r=2 k=11,j,r=2
n n
_ 2 2
- 42 E Ui U1k
k=11,5,r=2

where in the last inequality we used again that V2u(x) is diagonal. Moreover,
vq is 0-homogeneus in direction ey at zg, therefore A(xg)e; = 0, and this means

that w1 (zo) = 0, and thus ) u?j = |A|?2. On the other hand, denoting by

ij=2

A;; the coordinates of A, and being A —1— homogeneus at z( in direction ey,
A (xg
i an) = Bu(Ayy 0 ) ) = L

that ends the proof. O
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We are finally ready to prove the celeber Simons’ Theorem. (see [5])

Theorem 1.3.10 (Simons’ Theorem). There are no smooth minimizing cones
mR™ if2<n<7T.

Proof. Assume by contradiction that €2 is a smooth minimizing cone.

We will treat first the case n = 2. In this case, QN S! is a finite collection
of disjoint circular arcs. Take one of these arcs, with endpoints xg,x;. If
xg # —x1, denote by T the closed triangle spanned by xzg,z; and 0, and
consider Q' := Q\ T'. Since in a triangle the lenght of a side is strictly smaller
than the sum of the lenghts of the other two sides, we get that P(Q'; B(0,2)) <
P(£; B(0,2)), and QAQ' cC B(0,2). Therefore, 2 N S! consists of just one
circular arc with antipodal end-points, that is §2 is a half-plane.

Consider now the case of n > 3.

We will use the stability inequality to prove that the second fundamental
form of 00\ {0} is identically zero. Since 92\ {0} is smooth, we are allowed to
use, in (1.7), test functions with support away from zero. Fix € > 0, and take as
a test function ¢ := ¢|Ale, where ¢ € C°(R™ \ {0}), and |Al := /| A]% + €2.
We have

1
Vol = ¢*|VaalAle* + |A12[Vaael* + = Vaa(9?) - Vaa(lAl?)

2
1 .. 1
= 0*|VoqlAlel* + |Al2|Vaael® + §dIV(<P2|A!f) - iwzﬁaﬂ(lAlf)
1 1 . 1
= wQWWaﬂ\A\Z!Q + A2 Vaael® + 5d1V(<P2|A!f) - ngﬁaﬂ(\AF)-

Now, Vaa(|A]?) and Aso(|A|?) vanish H" -almost everywhere on the set
{[4] = 0} N 00, and, on the set {|A] # 0}, i |Voal AP = {3z Voa Al
thus,

m\vaﬂmy?\? < a0/ VoalAl[?. By (1.7) and by the tangential diver-
gence theorem, using that the mean curvature of 92 vanishes,

1
[ 1Vl iy ~ 580m(4P) L a0y ~ 1APIAR)
o0

>—1/LA£W%QwF-
o
Letting € — 0, and using (1.9), we can write

2| A|?
[ APl <0,

o0
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and, since |A| < %, by smoothing and approximation, the previous inequality
holds for any ¢ Lipschitz such that

2
|
— < 00.
[ <
o0
Take now ¢ := u(|z|); by the Coarea formula,

i % = H2(90NS"Y) i u?(r)r"~ dr, where we used that, since v(z)-
o9 0

x =0, Vaglz| = V|z|, and thus the coarea factor of |z| on 9 is equal to 1.
Thus, using also that ¢ is 0-homogeneus and hence Vgap = Vi, the stability
inequality reduces to

84 4 (i -2 00 o

o0
whenever [ u?(r)r"~%dr < co. Let us define

0
(r) re, 0<r<l,
u(r) =
rﬁ, r>1,

where, in order to have w Lipschitz, we impose o« > 1 and 8 < 0. The

1 00

integrability condition on u is the finiteness of [ r2etn=6 and f r26+7=6 that
0 1

is

n
ﬁ<T<a.

Under this condition, the stability inequality implies
@=2) [ JAPRPeY w2 -2 [ 4P 20
BNaQ 80\ B

Now, since 3 < n < 7, there exist o and 8 such that

5—n 9

B <0, a>1, B<T<a, a? <2, %<2,
and thus
/ AP = = / AP 26D,
BNoQ 00\ B

that implies |A] = 0, i.e. v is constant on 9 \ {0}, and then € is an half-
space. ]
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Notice that the Simons’ Theorem, together with Theorem 1.3.7, imply that
n* > 8.

The critical dimension is indeed 8, as shown by the following Theorem due
to Bombieri, De Giorgi and Giusti [6] .

Theorem 1.3.11. If m > 4, then the Simons cone
Q= {(z,y) €R™ x R™ : [z] < [y}

s a smooth minimizing cone.



CHAPTER

Regularity of capillary
hypersurfaces

In sections 1, 2, 3 and 5 of this chapter we will follow the work of Edelen,
Chodosh, and Li in [2]. Let o € (0,1) be a real number, and let E C R be
a set of finite perimeter. We will work with the functional

A(E) :== H"(O*ENRIT) — oH"(0"ENR™), (2.1)

where R’};H is the upper half space and R™ := GRTA. If F is a set of locally
finite perimeter, and U is a bounded open set in R"*!, we will denote

Au(E) == A(UNE)

Like we did in the previous chapter with the perimeter, we want to study
the behaviour of minimizers of A among the class of sets of locally finite
perimeter.

Definition 2.0.1. Let A be an open set in R"*!, and let E be a set of locally
finite perimeter in R’}fl. We say that E is a minimizer for A in A if, for any
U C A bounded open set, and any E’ C Rfﬁ“ of locally finite perimeter such
that E'AFE CC A, then

Au(E) < Ay(E').

If A=R""! we will say that E is a minimizer of A.

22
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Definition 2.0.2. Let E be an open set in RT‘l, and denote M := 6EHRT'1.
Let A be an open set in R"*!. We say that E is smooth in A if the clousure
of M in A is a smooth hypersurface. We denote as 0M C R™ the boundary of
M, and we call M a capillary surface.

If E is a minimizer of A smooth in A, we will say that FE is a smooth
minimizer in A. If A = R""!, we say that E is a smooth minimizer.

If F is a cone, and A = R""!\ {0}, we will say that E is a smooth cone.

2.1 First and second variation

Let E be a smooth minimizer of A. In particular, for every admissible local
variation Ej of E,
d2

= 07 7A(Et)

d
a B d?

> 0.

[t=0 [t=0

Since we work in the upper half space we need variations with velocity vector
field tangential to R™. Namely, for T € C2°(R"*1:R"), we take the variation
®;(x) defined by the ODE

#Pu(x) = T(P()),
Oy(z) =z,
and we say that ® is a variation with initial velocity vector field T

Definition 2.1.1. Let E C RT};H be smooth.
We say that E is stationary for A, if

gAYy =0
for any local variation E} of A.
We say that E is stable for A, if
d2
@A(Et)h:o >0,

for any local variation E} of A.

Denote M := 0E N R?fl, and let v be the unit normal vector field of M
in E that points out of E, n be the unit normal vector field of M in M that
points out of M, e, 1 be the (n + 1) vector of the canonical basis of R"*!,
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and 7 be the unit normal vector field of M in R™ that points out of 0E NR™.
Notice that, since e,11 L OM and 7 = v={ent)entt e have

vV 1—(v-ent1)?
v € Span(v,n), ent1 € Span(v,n). (2.2)

Take T € C°(R";R") and define E; := ®;(F). Using the first variation of
the area, the tangential divergence theorem, and the area formula, it’s easy to
see that, for ¢ small enough,

%A(Et) = / Hy(P(2))T(Pe(x)) - ve(Pe(x))I prPe(z)d H™ (x)+
M

+/T(‘I’t(ﬂ?))'(nt(‘l’t(x))—UVt(q)t(fU)))JaM‘Pt(év)dHn_l(l‘% (2.3)
oM

where H; is the mean curvature of M; := ®;(M), v, is the unit normal vector
field of My in E; that points out of E, 7 is the unit normal vector field of
OM; in M; that points out of M;, U; is the unit normal vector field of 0M; in
R™ that points out of OE; NR™, J 5y P(x) is the Jacobian of the isomorphism
d®y(x) : T,M — T, (z)Mi, and J o Pi(z) is the Jacobian of the isomorphism
d@t(l‘) : TzaM — T@t(w)aMt.

From (2.3) and the stationarity of E we get

Hy =0, n-— (77 : en+1)en+1 =ov, (24)
from which, taking into account that n L v, and that 7 € Span(v, n),
cos() = o, (2.5)

where cos(f) := v - ep41. Now we compute the second variation %A(Et)lt:o
taking the derivative of (2.3). Derivating under the integral sign and using
(2.4), we obtain

d? d n d _ e
@A(Et)hzo :/dt(Hto(I)t)t_oT'VdH +/T'dt(’f]t0®t—O'Vt0(Dt)t_o dH 1,
M oM
(2.6)
therefore we need to compute %(Ht ody)|,_, and %(m —0ot)|,_,- We will deal

first with the derivative~ of the unit normal vector fields vy, 7, and 7;.
We recall that, since E' is an open set with smooth boundary, there exists
a smooth real-valued map § defined on a neighbourhood of OF, such that
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N := V5 is an extension of v with |N| = 1. Therefore A := V23 is a symmetric
extension of the second fundamental form of OF satisfying A N = 0. Rotating
N of § in the plane defined by N and e, 1, we obtain a smooth extension Z
of n to a neighbourhood of M, satisfying |Z| =1 and Z L N. Therefore,

(V2)'Z =0, (VZ)IN = —(VN)Z. (2.7)
Finally, we give an extension N of 7 defined by N = N-(V-enti)ents
1-(N-ent1)?

By a simple computation we can express vy, ¢ and 7 in terms of v,  and U:

(V(I)t)_ty
b, = —F—— 2.8
Ve = (V) (28)
(V@) ™' — (v o @y - (V) "1y 0 Py

o ®, = : 2.9
e (V@) =ty — (o @ - (Vi) i)y o Oy (29)

—t— . i
Ty o B, — (V&)™ U — (eng1- (V®) Vet (2.10)

(V®)~ 7 — (epy1 - (V) W)epta|

Using these relations and the fact that v-n = 0,7 - ep41 = 0, and that
T - enr1 = 0 provides (VT)!e, 1 = 0, we can compute

d
oy, = —(VD)'v + (v- (VD) ')y, (2.11)

%moq’t oo = —(VI)'n+ (v (VT) v+ (n-(VT) v)v+(n- (V) 'n)n, (2.12)

d
TP, = —(VT)'T + (eny1 - (VT D)epi1 + (@ - (VI)'D)D.  (2.13)
Taking from now on
T = Ld N, (2.14)
v1-— (N : €n+1)2
with o € C°(OM), we have T' € Span(N, Z), therefore T' = (I-N)N+(T-2)Z.
Since on OM we have T'= (T -v)v = (T - n)n+ (T - v)v, we have

T- <;tl/t o ®y |t_0> = —(T-0)o-(VD)'o+ @- (VI)'D)(T-7) =0, (2.15)

and
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d
T-(dtmo@t t_o) = =T-(VI)'n+((T - v)v - (VT)'n)+((T - n)n - (VT)'n)) +
+(T - v)(n- (VD)'v) = (T v)(n- (VI)'v). (2.16)

Using now VI' = (T"- N)A+(T-Z)VZ+N@V(T-N)+ZxV (T - Z), where

by v ® w we mean v - w', and taking into account that A N = 0, we have

(T-v)(n-(VT)'v) = (T-N)(Z-(VT)'N) = (T-N)(T-Z)(Z-(VZ)'N)+(T-N)V(T-N)-Z.

Now we use that (VZ)!N = —AZ, that T - N = ¢, and that, on M,

cos(f) cos(m/2 + 0)
sin?(0)

in order to deduce, from (2.15) and (2.16),

T-n=—¢ = pcot(0),

d B .
/T'dt(mo@t_aytoq)t)hod%n 12/—CO’G(G)QD277'A77+SOV(QO)-7)CZ’H 1

oM oM

(2.17)
We need now to compute the derivative of the mean curvature.

—t
Notice that N provides an extension Ny of 14 defined by Ny o ®; = %,

with |N¢| = 1. Therefore we have (VIN;)!N; = 0, which implies
Ht o (I)t = tT’(V(Nt) o) q)t) = tr((V@t)’tV(Nt o) q)t)) Then,

%Ht 0Py, = —tr((VT) A) + div (=(VT)'N + (N - (VT)'N)N) =

= —tr((VT)'A) + div (-Vu(T - N) + AT),

where —V s is the gradient tangential to M. Using that the divergence of a
tangential vector field is equal to its tangential divergence div,s, we have
div(Vp (T - N)) = divpy(Va (T - N)). Notice that, if 2 € M, Z(z) € T, M,
therefore, if f is a smooth function which is zero on M, Vf-Z = 0 on M.
Taking f = AS, which is equal to Hyp = 0 on M, and taking into account that
A = V?5 and that AN = 0, we have

div(AT) = 0; (0;0;5(T - Z)Z;) = (T-Z)V(A3)-Z+tr(V(T-2) Z)'A) = tr(V((T-Z) Z)' A),

where we used the Einstein summation convention for repeated indices.

Since —tr((VT)'A) = —tr(V((T - Z) Z)tA) — (T - N)|AJ?,

d .
@Ht oy, = —divarVu(p) — <P|A2|v (2.18)
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which gives, together with the tangential divergence theorem, and with Hy =0
on M,

/thto@t oo (T V) dH”:/|VM¢|2—]A\2go2dH"— / OVarg -ndH" L.
M M oM

(2.19)
Now, 7 is tangential to M at OM, then Vo -n = Ve - 7. Combining this
relation with (2.19), (2.17), and the minimality of F, we finally obtain the
following theorem.

Theorem 2.1.2 (Stability inequality). Let E C ]R:lfl be smooth and station-
ary for A. Then,
Hy =0, cos(f) = o, (2.20)

where cos(f) := ept1 - v. If, moreover, E is stable for A, it satisfies the
following stability inequality

/|VM<,0|2—|A|2<p2 dH" —cot(0) / <p277-A77 dH™ ! >0, for allp € C°(M).
M

oM
(2.21)

Notice that we proved (2.21) only for ¢ € C°(OM), but using a partition
of unity and the fact that if ¢ has support away from the boundary we are left
with the well known second variation of the perimeter, we can write (2.21) for
every ¢ € C(M).

Remark 2.1.3. We will apply the previous theorem to a minimizing cone
with an isolated singularity at the origin. In this case we are allowed to use
only test functions in C°(M \ {0}).

Notation 2.1.4. Since, for a stationary smnooth set of A we have cos(0) = o,
we will call o = cos(f), and we will call A = A% underlyining the dependence
on the angle 6.

Remark 2.1.5. Since any smooth minimizer © of A?, gives, by complemen-
tation, a smooth minimizer R?fl \ Q of A7 we will always assume, without
loss of generality, that 6 € (0, %).

Now we prove that, in the special case of a minimizing cone {2 with an
isolated singularity at the origin, we can lower the degrees of freedom of the
problem in (2.21).

For such an © we have that 3 := M N S™ is smooth, M = {AX |\ > 0}, and
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all the normal vector fields v, 7, n are 0-homogeneus. Moreover, if x € 3, v(z)
is the unit normal vector field of ¥ in S™ that points out of QN S™, n(x) is
the unit normal vector field of 9¥ is ¥ that points out of X, and 7 is the unit
normal vector field of 9% in QN S™ NR™ that points out of 92 N .S™ NR™.

Theorem 2.1.6. Suppose Q) C RT‘l is a cone, stationary and stable for A,
with an 1solated singularity at the origin. Then we have that

_9\?2
/ (Vs fP—A2S?) dH" " —cot 8 / 17-A77f2d“rl”‘22—<n2 ) / 2 dpn,
> ox >
(2.22)

for all f € C1(S™)

Proof. We use as a test function in (2.21) p(wr) = g(r)f(w), where w € S™,
r >0, f € CHS") and g € C>°(0,0). Using the coarea formula and that,
since v and f are O0-homogeneus, A and V f are (—1)—homogeneus, we get

o

[t [ G022 @+ 0T hP = A2 0) ) Y ) dr-

0 P

—cotd [ 173570 [nw) - Aunleo) ) dH ) dr 0,
0 )

and by the Hardy inequality (see Lemma 2.1.7) follows that

(n—2)% g { o g (r)?rmtdr

c g€ C’go((O,Jroo))}.

4 fooo g(r)2rn=3dr
O
Lemma 2.1.7. We have that
(n—2)2 Ooo g (r)2rLdr
= —inf - : g€ Cx((0, )
4 1n Jog(r)2rm=3dr g (0, +0))
1 n—1 1 n—3

Proof. Let g € C2°((0,400)). Since g’(r)rn% = (g(r)r= ) — %g(r)rT’,
we have that

+o°/ 2 n—1 oo n—l.,9
/ g (r)’r drz/o (g(r)r T Y2 dr
0
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2 [Ty g ar
0

Now we notice that for every ¢ € C2°((0,400)) we have
+oo , +o0 ,
| e == [ dwrewar

= —/(:oc> ((907“)’ - @)sodT

“+o00 —+o00
= —/ (wr)’werr/ ©*dr,
0 0

which gives that

—+o00 —+o00
2 / (rop)' o dr = / o dr,
0 0

2/0+Oo(g(r)rn;1)’g(r)rn;3 dr = /0+OO (g(r)rnT_S)er

/0+00 g (r)?r"tdr = /0+°0 ‘ (g(r)rnT_l)/ dr + ( . ; ! + (n g 1>2> /0+°° g(r)2 3 dr

= /0+°° ‘ (g(r)r%>, ’ dr + (n-1n=3 1{4@ —3) /OJroog(r)zrn3 dr.

Setting ¢(r) =r"2z g(r), we get that

and so

2

OOO g (r)?rLdr _ fooo (cp/(r))2 dr N (d—1)(d—3)
Jo" g(r)2rm=3dr o 2 (r)dr 4 '

Finally, by the Hardy inequality (see [4]), we have that

e[

e | P > ((0, +oo))}.
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2.2 The main Theorem

Like we did for perimeter minimizers, we want to study the regularity of min-
imizers for A%

Also in this context, we have regularity away from a singular set, as stated
in the following theorem (see [7]).

Theorem 2.2.1. Let 6 € (0,%). Letn < 6, E C R be a minimizer of
Al and let M = aEDR:”_H. Then, M is a smooth hypersurface away from
a closed set (M) C M NR"™, that we call the singular set of M. Moreover,

H1(2(M)) = 0.

Moreover, it can be proven that the Federer’s dimension reduction argu-
ment applies also here, so that we have the following Theorem.

Theorem 2.2.2. Let 0 € (0,5). There is a critical dimension n*(0) (defined
as the first dimension n such that there is a smooth minimizing cone for A?
in R"*1) such that

e if n < n*, then the singular set (M) is empty for any minimizer of A?
in R’fH-l;

e if n.=n*, then for any minimizer of A° in R"*1 the singular set ©(M)
18 a discrete set of points;

e if n.> n*, then for any minimizer of A° in R"*1, the Hausdorff dimen-
sion of X(M) is at most n — n*, that is:

H U HE(S(M)) =0 for every &> 0.
Therefore, we study smooth cones also in this context, proving the following
Theorem.
Theorem 2.2.3. There are angles 0y and 01 such that the following holds.
e n*(0) >4, for any 6 € (0,%).
e If0 <0 < by, then n*(9) > 5.
o If0; <0< 73, thenn*(0) >7.
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2.3 The case n =3

We are going to prove that there are no minimizing cones (for (2.1)) with an
isolated singularity in Ri. In this case ¥ is a surface embedded in S3. We
will use (2.22) combined with the Gauss-Bonnet Theorem to find out that
x(Cx) > 0, for every connected component of ¥, where x is the Euler char-
acteristic. By the classification of compact oriented connected surfaces with
boundary will folllow that ¥ is homeomorphic to a disk. By the uniformization
theorem (see [8]), then, will follow that ¥ is conformally equivalent to a disk,
and we will use a conformal parametrization of ¥ to show that |A|?> =0 on X,
and by homogeneity |A|?> = 0 on M. This, together with the boundary contact
angle condition, implies that € is the intersection of an half-space with ]R?FH,
therefore it is smooth also in the origin.

We need some Lemmas and definitions before the proof.

Notice that the second fundamental form A of a cone satisfies A, x = A, v(x) =
0, then A can be viewed as a symmetric tensor field on TY. The second fun-
damental form of ¥, as a submanifold of S3, is defined through

o(v,w) = Vv - w, (2.23)

where V is the Levi-Civita connection on S induced by the euclidean metric,
and v,w € T3. Since, in order to use the Gauss-Bonnet theorem, we will
need o to compute the geodesic curvature of 9%, we now exploit the relation
between A and o.

Lemma 2.3.1. For every v,w € T,%, and for every Y,Y wvector fields on 3,
v Agw = g (v, w), Y(p)- ApY(p) = =VyY(p)-v(p) (2.24)

Proof. For a fixed z € T3, we can choose a coordinate system for ¥ such that
the metric is 0 at the first order in z. Therefore, Vv (z) = dyv(z) = Ay v,
that gives the first equality in (2.24), which is independent on the coordinate
system.

Differentiating Y - v = 0 we obtain

Vyv - Y = —Vyff -,
that ends the proof. O
For a more detailed version of the following Lemma we refer to [9].
Lemma 2.3.2. Let ¥ as above. Then, at 0%,
cot On - An = —ky, (2.25)

where kg is the geodesic curvature of 0X.
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Proof. By definition, ky = =V 7-7. Since M has zero mean curvature, n-An =
—7A - 7, where 7 is the unit tangent vector field of 0X. Therefore, by the
previous Lemma,

cosfn-An+sinfky = —V,7-(—cosfv +sinfn).

Now, —cosfv + sinfln = —epy1, and since 7 is orthogonal to en41, so is

V.. O

Definition 2.3.3. Let N be a Riemannian manifold with dimension 2. We
define the Gaussian curvature K of N by

Ry

K=— 2.26
X (226)

where Ry is the Ricci curvature of N.

Remark 2.3.4. If (M, g) is a Riemannian manifold and z* are coordinates
on M, the Christoffel symbol with respect to the Levi-Civita connection are
given by

1
Fi‘t,ll = 5‘g)\a'(ap“gl/g + 8Vguo' - 80‘9””), (227)

where we used the Einstein convention for repeated indexes, and where ¢’ are
the coordinates of g—!. We recall that the Ricci curvature at a point p € M is
given by

Ry = 0,L%, — 9,10, +Th\T), —Th\ ), (2.28)
whenever ¢, (p) = .., and we will compute the Ricci curvature at a point
only in those particular coordinate systems.

Lemma 2.3.5. Let M as above. Then,
Ry = —| AP (2.29)

Proof. Notice that (2.29) doesn’t depend on the coordinate system. Therefore
we can fix p € M, and, up to translation and rotations, we can assume that
p = 0, and that, locally in 0, M is the graph of a function u(z) : R” — R, such
that u(0) = 0, Vu(0) = 0, and D?u(0) is diagonal. In this coordinate system

g=1d+Vu® Vu.

Therefore, using that, for every matrix A with ||A|| < 1, the Neumann series
gives

(Id+ A)~' = i(—l)kAk,
=0
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the Taylor expansion of Vu in 0 gives
9" (x) = 8" + O(Jz[?).
Moreover, the external normal to M in Q is
vou(z) = (Vu,—1)[1 + [Vul?| V2,

which implies
A(0) = D*u(0), (2.30)

and, since the mean curvature of M is zero,
Au(0) = 0. (2.31)

Computing the Christoffel symbols,

1 (o}
Fﬁu = 59)\ (Op(upus) + (‘L(uguu) — O (upuy)) =

Ao
= g ua,u/“/ =

= UpUpy + O(|33|2),
in particular I‘;),/(()) = 0. Therefore the Ricci curvature in 0 is

Ry (0) = 0,1,(0) — 9,17, (0) =
= Opu(uptiny)(0) — Oy (uuuy,)(0) =
= (Au(0))? — [ D*u(0)|* =
= —|A]%(0).

O

Lemma 2.3.6. Let ¥ and M as above(For this Lemma we don’t require sta-
tionarity or stability for M ). Then,
R

Ky = TM +1 (2.32)
Proof. Let us denote as f‘ﬁl, the Christoffel symbols of ¥, and as g the metric
on X. Take a point p € ¥ and let ¢ : U C R? — 3 be a local parametrization
of ¥ in p = $(0) such that, in the coordinates induced by @, §(0)u = dpw,
and Ff;,,(()) = 0. Notice that the function ¢ : U x R, — M defined by
o(z,7) = r@(x) is a local parametrization of M around p that agrees on
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U x {1} with ¢. Let us work in the coordinates induced by ¢ on M. Notice
that

ng(:Ear) = rg;u/(-’x) if/ﬁ,l/ <2,
gus(x,r) =r@u(x) - ¢ =0 ifp <2,
gs3(z,r) = |@*(z) = 1,

where we used that ¥ C S% and that ¢ - ¢ = 1 implies @,, - = 0. Therefore
the Christoffel symbols satisy

A _ T .
FHV(IL"T) - F/J,V(‘,E) lfl'éa v, )‘ S 2
3, (x,7) = —rgu(z) = —r + o(|z]) it g, v < 2
re,=T5,=0
3, (z,r) =r=15) ifA\ v <2
=0 i\ < 2.

In particular, the Christoffel symbols of ¥ are the same in the coordinates
induced by ¢ and the ones induced by ¢, and every time that two indexes
between A, u, v are equal to 3 we have Ff;,, = 0. Therefore, using also Ff;l,(O) =
0 and G, (0) = dpws

R (0,1) = Rs(0) + (9515, — 8313 + Thp Ty, — T4, T,)(0,1) =
= Rx;(0) — Guw(0) + 2 — 25, (0) — (—2G,1(0)5) +2) =
=Ry(0)—2+2—-4—(—4+2)=
= Rx(0) — 2.
Then Rx (0 Ry (0,1
KE(O): 2(): M(? )_|_17
2 2
and the fact that ¢(0,1) = ¢(0) = p ends the proof. O

Definition 2.3.7. A diffeomorphism u : (N, g) — (]\7, g) between Riemannian
manifolds is conformal if there exists a smooth function A > 0 on N such that

(25 00N g (20
g a$i7a$]’ N g 895/895]- ’

for every local parametrization x of N.
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Lemma 2.3.8. Let X and Q0 as above, D be the closed unit disk in the complex
plane. Ifu: D ~ ¥ is a conformal diffeomorphism, the following relations hold

vi-uj = Ay = —v - u; (2.33)

Au-v=0 (2.34)

Ui - Ug = —Usgp - UL (2.35)

Uij - Ui = Ukj - Uk (2.36)

V1t Ug2 = V2t U12 (2.37)

Vo Ul = V] - U2 (2.38)

where A;\’j = % are the coordinates of the second fundamental form under

the parametrization u, and v; is the i'h—partial derivative of v o w. Here
A=l = Juy .

Proof. wu; is tangent to X, therefore, taking the derivative of w; - (v ou) = 0,
we obtain (2.33). Since M has zero mean curvature, and since uj,us gives
an orthogonal basis of TY, we have also (2.34). (2.35) follows by taking the
kth—derivative of the relation u; - us = 0,and aking the j'h—derivative of
w; - u; = ug - ug gives (2.36). From v-u =0 and v-v =1 we have

vi-u=—v-u =0,

v; v =020,
which means v; € TX. Therefore, using the previous equations,
At - uge = (v - up)ur - uge + (V1 - uz)uz - ug =

= (—vo - u2)(—u2 - ui2) + (v2 - ur)(u1 - ui2) =

= A\l9 - Uq12.
(2.38) holds with the same proof. O
Lemma 2.3.9. Let Q and X as above. Then, for every x € 0%,
Az n(x) L OX. (2.39)

Proof. Let x € 0¥ and 7(z) € T,0%. Since n = 3, (z,v(z),n(z),7(x)) is
an orthogonal basis of R*. Since VN, z = VN, v(x) = 0, the image of VN,
lays in Span(n(z),7(x)). Let v be a curve in 0¥ such that v(0) = x and
~'(0) = 7(z). From (v o7) - eyt1 = cosf we have

éent1- VN T =0.
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Now, VN 7 = u1n + ue7, and, since at the boundary 7 - e, 11 = sinf # 0, and
T -ent1 = 0, we have p; = 0, so that

n-VNT=0.

Theorem 2.3.10. Let M and ¥ as above. Then |Al> =0

Proof. Up to replace % with one of its connected components we can assume
> connected. )

. . . A
Apply (2.22) with f = 1, and using that, by previous lemmas, —%
we get

_ 2
/KgdHZJr/kgd”Hl > HA(X) <41+1) +/|é|d7-12.
) %

[>))

:Kz_la

By Gauss-Bonnet theorem and H2(X) > 0 we have that x(X) > 0, and as
previously discussed, we can find a conformal diffeomorphism u between the
complex unit disc D and X.

Take complex coordinates z = z + iy and polar coordinates z = re® on D.
since u is conformal, g—:f 1 g—g. Since at the boundary g—g e Tox, ‘3—1; must be
proportional to 1, and, by Lemma 2.3.9, at the boundary holds

_8u.A8u

A= =0 on oD.

ar oo
On the other hand, on the whole disk we have

2
TAr,a = xy(Agg — All) + A12($2 — y2) = <22(A22 — A+ 2iA12)> .

Define then
2}1(2’) = AQQ - All + QiAlg = 2A22 + 2iA12.

If we prove that h is holomorphic, so is 22h. But z?h has immaginary part
zero at OD, therefore the harmonic function 3(22h(z)) is identically zero by
the maximum principle. From this, we have that 22h(z) is an holomorphic
functions with real values that is zero in zero, so it is identically zero. Therefore
so is h, which means |A|? = 0. We set

hl = Rh and h? = Sh.
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Let us prove that h is holomorphic. Using (2.37) and (2.38), we get

1_

hi =v1-u2 +v-u

2 1
hs =vy-uia +v-uj = hy
2 _

hi =uv1-ui2 +v-uii2

1_ 32
hs = —vo - upr — v -ug11 = —hi,

which means that h satisfies the Cauchy-Riemann equations. 0

2.4 The case n = 4 for contact angles close to 0

In this section we exploit the connection between the cones minimizing A°
and the one-homogeneus minimizer of the Alt-Caffarelli functional. In order
to understand how this connection arises, consider the case where a cone Q¢
minimum of A? is the region below the graph of a one-homogeneous lipschitz
function u? over the z, 1 direction. Namely, calling M? = 890731“, it holds
M9 = {(2/,u% (")) : 2’ € R*,u%(z') > 0}.

Setting v? = %, and assuming that the Lipschitz constant of v, and

thus |Vv?|, is uniformly bounded as 6 goes to 0, we can write

AP(0F) = /0 TV con(O)L
u’>
1
= /0 . ((1 — cos(&)))]lve>0 + 3 tan?(0)|Vo? | + O(tan*(9)) =
v >
= 1tan2(6)/ (!VUQQ + 1o+ 0(02)),
2 v?>0

where we used that 1+z =1+ %m + O(z?) as x goes to zero. Thus, we

6 .
can expect that, as 6 goes to zero, v = ta“ﬁ converges 1 some sense to an

one-homogeneous minimizer of the one-phase Alt-Caffarelli functional

J(v) = / IVo|? + 1y>o0. (2.40)
Rn

The definition of a minimizer is the following.

Definition 2.4.1. We say that u € Hlloc(]R") minimizes J if, for any U CC R”,
and any w € HY(U) such that u —w € H}(U), we have

J(u) < J(w)
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Using these idea, we will make use of the following teo known facts about
minimizers of J. (see [10] and [3])

Theorem 2.4.2. Let u € H} _(R™) be a minimizer of J in R™. Then there
exists a constant co(n) > 1 such that

Clod(:r, O{u>0}) < ulx) < d(w,0fu>0}),  ulx)>0

Theorem 2.4.3. Ifn < 4 and u € H} (R™) is a minimizer of J, then there
exists a unit vector n such that

u=(z-n)t.

Having this in mind, we want to prove that, for # small, a minimizing cone
of A? with an isolated singularity at 0 is graphical.

We start our treatment by proving that a smooth minimum € of A? has a
minimizing boundary away from M.

Definition 2.4.4. Let A C R""! be an open set. We say that a set M is
a mass-minimizing boundary in A if there exists a set E with locally finite
perimeter such that 0*F N A= M N A, and FE is a perimeter minimizer in A.

Definition 2.4.5. Let v > 0, and let 2’ € R™. We call the cylinder of center
z' and radius 7 the set U, (2') := B,(0,7) x R.

More generally, if T' is a set in R?, 7 : R**! — R” is the orthogonal
projection, we call the 7-cylinder generated by I' the set U, (") := {z € R+ .

d(m(z),I)} <~
Lemma 2.4.6. Let Q be an open set, minimum of A? in B(0;r) that is smooth
in B(0,7). Let x € M N B(0,r) "R such that d(w(z),0M) > ~. Let C be

B(z,v) or Uy(n(x)).
Then M is a mass minimizing boundary in C N B(0,r).

Proof. By hypothesis, C N B(0,7) N M NR™ = (), thus we can choose ¢ > 0
such that, for any z € C'N B(0,r) N M holds x,,+1 > €. Notice that either
or R\ @ has empty intersection with C' N B(0,7) N {zn41 < €}, and we call
this set E. Indeed, if we had x € Q and y € ]RT”L \ Q with x,y € C N B(0,7),
and xp41,Ynt1 < €, then there should be a point z in the segment between x
and y satisfying z € 09, but, by convexity of C N B(0,r) N {z' : x],; < €},
z € CNB(0,7)NM and 2,41 < €, that, by how we chose €, gives a contradiction.
Therefore, E is a minimizer for A% in B (0,7), where 0 is either 6 or m — 6, and,
for any F' with locally finite perimeter such that EAF C U cC C N B(0,r),
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we can choose € < € such that the set F,/, defined by cutting F' with the upper
half-space {z,,+1 > €'} inside C'N B(0,r), is a set of locally finite perimeter
satisfying P(F.;U) < P(F;U). Moreover, by our choise of €, we still have
FoAE C U, and thus,

P(E;U) =H" (M NU) = AY(E) < A%(F.) = P(F.;U) < P(F;U).
O

Remark 2.4.7. Notice that the previous Lemma is true also for €2 smooth
cone with an isolated singularity at zero. And notice that the Lemma is true
for any ball B(x,r) such that

zreM  B(x,r) cc RYH,
without any constraint on d(w(z), OM).

We state now a consequence of the Allard regularity Theorem (see [2]).

Proposition 2.4.8. There is an eg(n) such that the following holds. Let M
be a mass minimizing boundary in B(0,7), r > 0, such that

0e M, sup 1 Hzap1| < € < 6.
MnB(0,r)

Then there eszists c(n) > 0 such that M N B(0,7/2) is the graph over the
Tpt1-direction of a function w, with the estimate

r|V2u| + [Vu| + 77 Hul < e(n)e, on B(0,7/2). (2.41)

We need also an Harnack inequality for harmonic functions on mass-minimizing
boundary, due to Bombieri and Giusti [11].

Theorem 2.4.9. Let M be a mass-minimizing boundary in B(0,7) C R™.
Then, there are constants o(n) € (0,1), c(n) such that if u € C*(B(0,r))
satisfies

/Vu-chd’H”zO, Vo € CHB(0,r)), u > 0on M,
M

then

sup uwu<c inf w. (2.42)
MnNB(0,07) MnNB(0,0r)
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Remark 2.4.10. Notice that in our context there is a natural choice of an
harmonic function on a mass minimizing boundaty: indeed, by Lemma 2.4.6,
if © is a minimizer of A?, then M is a mass minimizing boundary away from
OM . Moreover, the height x,,41 is a strongly harmonic function in M. Indeed,

VMTni1 = eny1 — (Ent1 - V)V,
Apxpyr = div(Vpzps1) = —div(v)(eny1 - V) — ey - Av =0,

where we used that Av = 0, and that divy is the mean curvature of M, that
is zero by minimality.

The next Lemma rules out a graphical minimizer of A? having large pieces
that stay too close to the boundary, and it is similar to [10]|[Lemma 3.4].

Lemma 2.4.11. Let Q be a minimizer for A% in B(0,1), and assume that
there exists w : B™(0,1) — [0,00) Lipschitz such that M N B(0,1) = 92N
R N B(0,1) = graph(u).{u > 0}, and such that QN B(0,1) is the region
below M.

Then, there exists a constant e(n) > 0, such that if sup u < €f, we must
B(0,1/2)
have w =0 on B(0,1/4).

Proof. We want to use a positive Lipschitz function that is zero on B(0,1/4).
Let us define the harmonic radial function

$Jz]) = |27 = (1/4)*7",
and notice that ¢(1/4) =0, and ¢(r) < 0 for » > 1/4. Define then
v(x) = ¢ed max{—¢(|z|),0}.

where ¢(n) is chosen so that v > u on 0B(0,1/2). Thus, v = 0 on B(0,1/4)
and v > 0 on B(0,1) \ B(0,1/4). Since min(u,v) = uw on 9B(0,1/2), and

therefore, we can define the function

(z) = {min(u,v)(a:), z € B(0,1/2),
u(x), x € B(0,1)\ B(0,1/2).

Hence, if we take Q to be the region below the graph of ¢ in erfl, it holds
QAQ cc B(0,1), and therefore A%(O’l)(Q) < AQB(M)(Q), that is, since v =0
on B(0,1/4)
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V 1+ |Vu|? — cos(8) dx <

B(0,1/2)N{u>0}

V14 |Vmin(u,v)2 — cos(f).
{(u>0}nB(0,1/2)\ B(0,1/4)

Using the inequality v/1 + a2—+/1 + b? < a®—b? we can write, calling B(0,7) =
B,

/ V14 |Vul? —cos(0)1ys0) < / V1 + |V min(u,v)[2 — /1 + |Vul?

By 4 By 5\Bi4
= / V14 Vo2 — /14 |[Vul?
{u>v}NBy/5\B1 /4
< / |Vo|? — |[Vul?
{u>v}NBy 2\ By /4
<=2 / V(u—wv)-V(v)
{(u>v}NBy 2\ By /4

where we used that |[Vv|? — |Vu|? + 2V (u —v) - Vo = —|V(u —v)|* < 0. Now,
since v is harmonic in Byp \ By, and u —v = 0 on 9B1/2, and v = 0 on
8Bl/47

-2 / V(u—v) V() =2 / V max(u — v,0) - Vo

{u>v}NBy 12\B /4 By/5\By 4
2 / w0,
0B 4
= 2c(n)ed / u,
0B1/4
and thus

/ V14 |Vul? —cos(0) 150y < 2¢(n)ed / u. (2.43)

Bia 0By,
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The aim is to prove that [ w = 0. This would be enough, indeed, we can
681/4

apply the result to B, with r < 1, gaining that also [ u = 0, and thus
OB, /4
u=0on Byy. :
A simple computation shows that, for t > 0 and 6 € [0, 7/2],
2VI+12 —t0 —1>V4—02—-1>1-0%/3>1—02/2+60*/4 > cos(h),
then, using the trace inequality, the bound |u| < €f and the above inequality
with ¢ = |[Vu|, we can write

[ w<am [ vu

0By 4 By

<amo [ [Vulp+ 0140

By
< ca(n)f" / Vul8 + (1 — cos(8)) L oy
By
< 202(n)9_1 / 1+ ’vu|2 - COS(G)]l{u>O}a
B4

that, together with the (2.43), implies | w = 0 for € small enough depending
0By 4
only on the dimension n. ]

With the next Lemma we show how an appropriate height bound close to
the boundary of M gives a criterion to write M as a Lipschitz graph even far
away from the boundary, extending the height bound with different constants.

Lemma 2.4.12. There exists 6g(n,~y) > 0 such that the following holds.
Let 0 < 6y, and Q C R be an open set with smooth boundary in B(0,1)N

]RT'l, that is a minimizer of A% in By. Let M = 92N RT‘l. Assume that
there exist 0 < v <1 and ¢y > 0 such that

d(0,0M) < %; (2.44)
if x € M N By with d(w(x),0M N By) < 7 we have
% tan(0)d(r(x), OM) < wns1 < 2tan(0)d(r(z), OM). (2.45)
0

Then there exists a Lipschitz function u : qu/g — R and a constant c(n, )
such that
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1. M:={(zu(2):z e By, u(z) >0} C M.

2. M0 By N B}, NUx(OM N By) C M.

3. If C is a connected component of (M UIM) N Bzsy N W_I(B?/Q), then
Cc M.

4. LetQ C RT};H be the region below the graph of u. Then Q c Q. Moreover,

M has positive distance, depending only on~y and n, from any other piece
of M in Byjq N1~ (B})5)

5. d(0,0{u > 0}) < 3 and |u| + Lip(u) < ¢(n,v) tan(d),
0. For any z € B, with u(z) > 0, there exists a constant c¢(n,vy) such that

1

c(n,7)

tan(0)d(z, 0{u > 0}) < u(z) < ¢(n,v) tan(d)d(z, 0{u > 0}),

(2.46)
where O{u > 0} is the boundary of the set {u > 0} in Bi),-

Proof. Notice that, since M has zero mean curvature, and it is smoothly em-
bedded at the boundary of RZL_H with fixed contact angle 6 € (0, %), there
exists § << 1 depending on M, such that Us(OM) N M is graphical over R",
and 2 is the region below its boundary. Here we extend this property.

Take any € M By 4N~ (B},) U3 (OMNBy), take r := drlz) OMNBY)
and notice that, since d(m(z), 0M N By) < |m(z)|+d(0,0MNBy) < 3+3 <1,
B(z,r) C B(0,1)NU,(0M N By). Then, thanks to Lemma 2.4.6, M is a mass

minimizing boundary in B(z,r), and (2.45) gives
Yn+1 < 8tan(f)r, y € B(z,r).

Thus, thanks to Proposition 2.4.8, provided that 6 is small enough, depending
on n and 1, there exists a C! function u, : B"(w(z), %), such that

Mn B(l‘, ;) = graph(ug), |Vug| < 8tan(6).

Notice that, any other possible 2’ € Bs/s N M N ﬂ_l(B{L/Q) such that 7(z) =
m(x) must satisfy ], ; < 8tan(f)r, thus |2’ — x| < 8tan(d)r < & for # small,
and B(x,r/2) N M is a graph, hence 2/ = x. This proves that the functions
u; paste well together, and we can define a Lipschitz function u such that

M 0 By N (Biy) NUy(OM N By) = graph(u), |Vu| < 8tan(6).
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Let now o < % and C like in Theorem 2.4.9, and take any
x € graph(u) N By 4 N 7 ?/2) N 6U%(8M N By).

M is a mass minimizing boundary in B(z,07), and we can thus apply the
Harnack inequality, obtaining, thanks to (2.45) considered at d(m(-),0M N
Bl) == %7

50,C tan(@)% < Ynt1 <2C tan(@)%, y € B(z,0%y) N M.
Applying again Proposition 2.4.8, provided that 6 is small enough, we can
extend graph(u) in M until B4 N W_I(B?/Q) N 8U%+027(8M N By), with u
satisfying

|Vu| < tan(G)i.

- 202

Moreover, by the same argument as above, there are no points of M below
the graph of u. We continue this process other N times, where N is the first
integer such that F + 0%y + NO'2% > %, extending u to a Lipschitz function
satisfying

CN+1
[Vl < e(n,y)tan(0),  e(n,7) = <5
1
- < - |
2¢cpc(n, ) tan(0)d(z,0M) < d(z,0M) < c(n,~) tan(0)d(z, M)

Notice that, since the number of steps IV is depending on v,n only, and at
each step we chose 6 small enough depending on %, where ¢ < N +1, we can
choose a 0y(n, ) such that for any < 6y the argument above works.

Note that, by construction, there are no points of M below the graph of u,
and, since close to the boundary dM 2 must be the region below the graph of
u, if Q is the open set in the statement, then Qcq.

Moreover, by construction, any other point of M N Bs/4 N ’/Til(B?/Q) that
doesn’t lay on the graph of u, that we call M, must satisfy

2
d(z, M) > %
All of this imply that any connected component of M N Bj/4 N Wﬁl(B?/Q) that

touches OM N Bgy N 77*1(3?/2) must be contained in M. Notice that u is
not defined in all points of B{L/Q. The points z in which u is not defined are

points z such that, if z € M N B4 N 771(2), then the connected component
of M N Bg 4 N7~ !(z) doesn’t touch OM N By 3, so we can set u(z) = 0. Notice
also that 0{u > 0} =0M N BY)5, thus (2.46) follows by construction.

O]
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Remark 2.4.13. If Q is a smooth minimizer for A?, M has zero mean cur-
vature, and meets R™ with a fixed contact angle 8. It can be proved that this
conditions allow to write, in small balls centered OM, 2 as the region below
the graph of a Lipschitz function over R™, and that, for some small ~, the
hypothesis of the previous Lemma are always satisfied.

We show now what happens when we apply the previous theorem to a
sequence of minimizers satisfying the assumptions of the previous Lemma with
the same v and ¢p, and such that § — 0. We need first the definition of local
Hausdorff convergence.

Definition 2.4.14. Suppose that X; is a sequence of closed sets in R", and €2
is an open set in R™. We say that X; converges in the local Hausdorff distance
in Q to the closed set X, if for every compact set K C €2, and every open set
U such that K C U C 2, we have

lim diStK’U(Xi, X)=0,

1—00

where, for any pair of closed subsets X,Y of 2, we define

distg (X, Y) := max{xg(a%(K dist(z,Y NU),  hax dist(y, X NU)}
Remark 2.4.15. It can be proven that, if X; — X in the local Hausdorff
distance in ), then

A X;) = d(- X),  inLZ(Q).

loc

Proposition 2.4.16. Let 6; > 0 be a sequence with lim 6; = 0, and let Q; C

1—00
RZ’[H be a sequence of open set with smooth boundary in By, such that §; is a

manimazer for A% in By, and let, as usual, M; := QN ]RQL_H.

Assume that, for some fized v,co > 0, (2.44) and (2.45) are satisfied by
each M;.

Let u; : BIL/Q — [0,00) be the function obtained in Lemma 2.4.12. Then,

up to a subsequence,
Us

V= tan(6;)

converges in (VVﬁ)c2 N Cﬁ‘)c)(B?/Q), for any a < 1, to a Lipschitz function v that
minimizes the Alt-Caffarelli functional J (2.40) in By
Moreover, 0{v; > 0} — d{v > 0} in the local Hausdorff distance in By,

and ]l{v,'>0} — ]l{'u>0} in Llloc(B{L/Z)'
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Proof. Since, by Lemma 2.4.12, |v;| + Lip(v;) < ¢(n, ), by Ascoli-Arzela The-
orem, up to a subsequence, there exists a function v : B?/z — [0, 00), such that
v; — v in Lf(fc(B?/z) and in CZ%C(B?/Q), and v satisfies |v| + Lip(v) < ¢(n, 7).
In particular, the convergence is strong in leoc,
quence, Vv; — Vv weakly in L?, and, by lower semicontinuity of the L?—norm

of the gradient,

and, up to take another subse-

[Vl < Tim inf [[vg]o-
1—00

Being W12 an Hilbert space, the strong convergence in W12 will be proved

once we know that limsup ||Vv;||2 < || Vvl|2.
i—00
Before proving this, we prove the local Hausdorff convergence of the free

boundaries, that will turn out to be useful to prov the strong convergence of
the functions.

Let us fix a compact set K C B?/Z, and an open set U C B?/Q, with
K C U. Fix € > 0 small enough, and cover K Nd{v > 0} with a finite number
of balls (B(:Uj,e));‘?:l, such that z; € K N 0{v > 0}, B(z;,e) C U, such that
there exist y; € B(zj,€), with 0 < v(y;) < € and, provided that € is small
enough, such that B(y;,2c(n,v)e) C U. Choose ig > 0 such that, for i > i,
0 < vi(yj) <, for any j = 1,-k. Taking now x € K N 0{v > 0}, there exists
j such that x € B(zj,€), thus d(z,0{v; > 0} NU) < e+ d(y;,0{v; >0} NU).
By Lemma 2.4.12, d(y;,0{v; > 0}) < c(n,v)vi(y;) < c(n,v)e, thus, since
B(yj,2c(n,v)e) C U, d(y;,0{vi > 0} NU) = d(y;,0{vi > 0}) < ¢(n,7)e, and
we proved that

max d(z,0{v; >0} NU)— 0, asi — 00
z€KNo{v>0}
Conversely, take z; € 9{v; > 0} N K such that d(z;,0{v > 0} NU) =

max  d(z,0{v > 0} NU). Using the Uhryson Lemma, is sufficient to
z€d{v;>0}NK

take a subsequence and assume that x; - € K. Since z € K C U, it is
sufficient to prove that z € 0{v > 0}, and we will have

max  d(z,0{v>0}NU) <d(z;,z) — 0, asi — 0.
z€d{v;>0}NK

If 7 ¢ 0{v > 0}, then there exists r > 0 such that v =0 on B(Z,2r) CC BY)s-
Then v; = mﬁ% — 0 uniformly on B(Z,2r), and, by Lemma 2.4.11, for ¢ big
enough v; =0 on B(Z,r). Thus, x; ¢ 0{v; > 0}, that is a contradiction.

We claim now that

lim Loy =Tgosp, 0 Lie(BY)y)-
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Indeed, let K be a compact subset of B, , then

1/2

[Tfo,501 — Loyl x) = 1Lgui>01 — Ulo (mngusoy)
+ [T, > 0 |1 (K fu=0}0)
+ [T g0 1 (Knogus0})-
The first and the second term converge to zero by dominated convergence,
thanks to the uniform convergence of v; to v on K. It is then sufficient to

prove that |0{v > 0}| = 0. By Lebesgue’s differentiation theorem, almost
every z € 9{v > 0} has Lebesgue density equal to 1, i.e.

lim |0{v > 0} N B(x,r)]

r—0 Wpr™

=1,

where w,, := |B}|. Take such an z, and take r such that (1 — 27%)w,r" <
|B(xz,r)No{v > 0}|, with 4 < k € N to be chosen properly. Take y € B(x,r/8)
with v(y) > 0, and notice that, for any z € B(y,r/4), B(z,727%) C B(z,r).
Then, we can find some 2’ € B(z,r27%) N B(x,r) N d{v > 0}, and we have

v(z) = v(2) —v() < c(n,v)]z — 2| < c(n,’y)r2*k, z € B(y,r/4).

Thus, if k is big enough, Lemma 2.4.11 and the uniform convergence of v; to
v imply that v(y) = 0. This means that there isn’t an x € 9{v > 0} with
Lebesgue density 1, and therefore |0{v > 0}| = 0.

We prove now together that v is a minimizer and that lim sup || Vv;|| 2 gy <
1—00
V|| 12(ky, for any compact set K C BY),.

Take 0 <r < 3, and take n € C°(Br), 0 < n < 1. Let us define
a; =ovn+ (1 —n)v;,

and notice that o; and v; have the same trace on B o- Thus, as we did in
previous proofs, we can make a comparison between €2; and the subgraph of
0;c;, and thanks to the minimality of €; with respect to A%, we get

/<\/1 + tan?(6;)|Vv;|? — cos(b; ))]l{vi>0} <

/(\/1 + tan?(6;)|Va;|? — cos(0; ))]l{a¢>0}- (2.47)
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Notice that, thanks to Lemma 2.4.12, tan(6;)c; gives a small perturbation of
M;, in the sense that, for i big enough, the pieces of Q; N B3y N B?/Q \ ©; have
positive distance, depending only on 7, from the region below graph(tan(6;)ca;),
and (2.47) is then a rigorous application of minimality of €2;, besides the region
below the graph of u; doesn’t cover the whole part of €; that lays in Bz, N
7N (BY)y) -

Going back to the proof, if we use that /1+2z =1+ % + O(z?), and that
|Vui| < e(n,), we get

12
/tanQ(ﬁ)N;Z‘ + (1 = cos(0)) 1y, >0y dx
Bp

< 0(9?) + /tanz(ﬂi)

n
BT

|Vozl-\2
2

+ (1= c08(0)) Lo, 01 + Oy(6) d,

where, with the notation O, we are underlyining the dependence of the O on
7, that is not a big deal, since we are now taking 7 fixed. We can divide the
inequality by tan?(#), getting

/ |Vv2-|2 + gy, >0y dv < o(1) + / |Vozi|2 + Lo, >0y dz,
Bn Bn

where o(1) is considered as i goes to co. Now, choose n = 75 such that ns =1

on BYj_s), and 5 =0 on B} \ BJ(; g, With this choice, a; = v on Bjy_s),

thus, estimating with 1 the indicator function of {cy; > 0} on BJ*\ Bl _s), we
get

/ Vil + 1,50y do < o(1) + / |V, |? d
B Bnr

+ / Tiys0y do + wpr(1—(1=6)")

B;l(l—é)

Since |Va;|? = |Vn(v—v;) +nVu+(1—n)Vv;|2, and since v; — v uniformly
on By, and |Vu;|, |Vv| < ¢(n, ), we have

J 1962 + gy do < o(1)+
Bn

r
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/nQWW + 2¢(n, v)(1 —n) dz.
BTL

+ / Tiysoy dr +wnr™(1— (1= 8)").
Bli_s)

Taking the lim sup as i — oo before, and then the limit as § — 0, we finally

get
limsup/|Vvi\2§ /‘VU’Q.
1—00

Bn Bn

Take now w € H'(BP), such that v —w € H{(B?). Since w has positive trace
on 9B}, it holds J(w;) < J(w), hence we can assume that w > 0. Then, if

rH
we repeat the same proof as above, with w; := nsw + (1 — ns)v; in place of «,

getting

/|W,~2+11{w>0} dr < o(1) + / |Vw;|? da
Br Br

+ / ]1{w>0} dx + wnr"(l — (1 — (5)”)
Bli_s)
The difference now is that we now v; — v in H'(B?), and thus Vw; —
V(ns(w —v) +v) in L?(B?), that yields to
/ IVol? + L{y=0p da <
By

/ IV (13 (w — ) + ) de
B?’L

+ / ]1{w>0} dr + wpr™(1— (1 —0)").

Bla—s

Using finally that we can choose 15 such that |Vns| < %, and that w —v €
HZ(BP), we can take the limit as § — 0, obtaining

J(v) < J(w).
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Remark 2.4.17. We remark that, in order to be really precise, in order to
make rigorous the comparison between w; and v; in the previous proof, we
should have taken first ¢ € C°(B)') and v + ¢ in place of w, then use that
w—v € HE(BY) and take the limits ¢ — w —v. This is because we want that
the subgraph of tan(f;)w; coincide with §; outside B/, for 0; small.

Now we turn our attention into smooth cones with an isolated singularity.

Proposition 2.4.18. Let 2 < n < 6, and let co(n) be the constant in Theorem
2.4.2. There exist constants Oy(n),do(n) > 0 such that, if 6 € (0,6p), and
Q C RTFI 1s a smooth cone with an isolated singularity at zero, that is a
manimizer for A%, then

210 tan(0)d(r(x), IM) < zns1 < 2¢0 tan(0)d(n(x), OM), (2.48)

for all z € M NV with d(m(z),0M) < dy, where

M:={zeM:a, = ){yn+1}}7

min
yeEMUOM :mt(y)=n(x

and V := B} \W/z x (0, 00).

Proof. Suppose otherwise. Then there are §; — 0, €; cones minimizing A%,
so that one of the inequalities in (2.48) fails for some z; € M N 8" with
d(m(x;),0MNV) =:d; — 0. Since 2 < n < 6, thanks to the Simons’ Theorem,
M doesn’t have connected components in R"*1\ {0}NS™ with positive distance
from R™. Thus, since M is a minimal hypersurface in 2V meeting R" at
a constant angle 6;, (2.48) must hold in some neighbourhood of OM N V.
Thus, we may choose d; as above such that (2.48) holds for any = € MNV
with d(m(z), 0M) < d;, and such that M N Usg, (M) NV is contained in the
graphic over R" of a Lipschitz function defined on (V) N Uyq,(OM). Let us
define ©} := i=r@d) . por NRIT = W, and denote z, :=

d;
xi%(wi). Notice that, since x; lays on the graph of a continuous function u;

such that (2.48) holds for any point y in its graph with d(w(y),0M) < d;,
(i)n+1 < 2tan(6;)d;. We can choose also x; € S™, because M, is homogeneus,
and the height bound is invariant on the radii. Since x; € S™, this implies that
|7(z;)| > 1 — 4tan?(0;)d? is far from zero. Then, the singularity of M/, that
is —W(ji), converges to infinity as ¢ goes to infinity. Notice that, since we are
applyiflg an horizontal translation, we are sending points of minimal height

of M; in points of minimal height of M. Let us call M'; the set of points at
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minimal height of M/ U dM]/ that lays in M/. Moreover, € V if and only if
/ z—m(x)

g = === is such that 2 > |d;z’ + 7(z;)| > 3.
Thus, (2.48) holds for any = € M’; such that

d(m(2"),0M]) < 1,

1
2> |dix’ + m(x;)] > 2

and fails at x}. Notice also that d(0,0M]) = 1. For any R > 0, if ¢ is big
enough, We can apply Lemma 2.4.12 and Proposition 2.4.16 in B(0, R). With
a dyagonal argument, up to a subsequence, we obtain a sequence of Lipschitz
functions u; : R™ — R such that tag(iei) converges to an entire minimizer of the
Alt Caffarelli functional v uniformly on compact subsets of R", 9{u; > 0} —
d{v > 0} in the local Hausdorff distance in R™. Moreover, for any R > 0 and
i > ig(R), M'; N B(0, R) is contained in the graph of u. By Theorem 2.4.2,
and by Remark 2.4.15, we deduce that, for ¢ > ip big enough, and for any
z:ui(z) >0,

% tan(0;)d(z, 0{u; > 0}) < wi(z) < 2tan(6;)d(z, 0{u; > 0}), z € BY.
0

Notice that 2 := I"_;r(xi) satisfies

m(z}) =0, ()1 < 2tan(6;).

7

Thus, for ¢ big enough, z; € B(0,1). This means, scaling back, that (2.48)
holds for x;, that is a contradiction. ]

We have now all the ingredients necessary to prove the following Theorem.

Theorem 2.4.19. Let 2 < n <6, and let 6; — 0, €; be a sequence of cones
manimizing A% with an isolated singularity at 0, and M; = 08Y; QRTFI. Then,
for i sufficiently large, M; is contained in the graph of a Lipschitz function u;
over R", and M; = graph(uj{u > 0}).Moreover, up to a subsequence, %

tan

converges in (Wlif N C*)(R™) to an entire minimizer v to the Alt-Caffarelli

functional J for all a € (0,1), and the free-boundaries d{u; > 0} — d{v > 0}
in the local Hausdorff distance.

Proof. Let 6y(n), do(n) given by 2.4.18, If 4 is such that 6; < 6y, we know
that any « € M; NV N Uy, (OM) satisfy (2.48), where M; and V are the same
as in the statement of Proposition 2.4.18. Let V' be Bg/Q \ @ Repeating
the proof of Lemma 2.4.12; using that dy depends only on n, and that any
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connected component of M; NV’ touches OM; N V', we can find a Lipschitz
function u; : V' N R™ — R, such that

M; N V' NRY = graph(u).{u; > 0},
oM; N V' = 8{’&@ > 0},

C(ln) tan(8)d(z, Ou; > 0}) < wi(z) < e(n)d(z, 0{u; > 0}), = € {u; > 0}
In particular, if 6y is small enough, M; NV’ lays at height smaller than ﬁ, SO
that, being C':= Bs4 \ Bys5, since any point of M; N C is connected to some
point in M; N C' N V', we must have M; N C C V'. We proved that M; N C
is contained in the graph of u;, and by homogeneity, u; can be extended to
the whole R™, so that M; = graph{u;}.{u; > 0}. Now, the same proof of
Proposition 2.4.16 can be applied, so that we get the thesis. O

At this point, in order to prove Theorem 2.2.3 in the case of 8 close to
zero, Chodosh, Edelen and Li take any sequence of minimizers §; for A%.
Thanks to Theorem 2.4.19, up to a subsequence, M; are the graph of Lipschitz
functions u; over R™, such that v; = ta:fﬁ coverges to a one-homogeneus
minimizer of the Alt-Caffarelli functional v. Since n = 4, thanks to Theorem
2.4.3, there exists some unit vector w such that v = (z-w);. They improve this
convergence through elliptic estimates, and, thanks to the connection between

V2u; and Ayy,, they are able to conclude that

. ‘AML‘ _

0, uniformly on any K C RTFI compact.
i—oo tan(6;)

Once they have this uniform convergence, they use the Simons’equation and

. OlAn, %] . .
estimates on ‘ thz(vg)li ’, in order to conclude that, for ¢ big enough, |Ays,| = 0.

We refer to 2] for the details.
We chose a different path, that we present in the next section.

2.5 Alternative proof for n = 3, and alternative
proof for n = 4 with 6 close to 0

Here we use ideas similar to the ones of Jerison and Savin in [3]. We were able
to deal with the case n = 3, but, for a matter of time, we were not able to
conclude the case n = 4. However, in view of the analogies with [3|, we think
that we just have to take the analogue of their competitor also in dimension
n = 4, and to check that it works.
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At first, we give an instability critherion.

Proposition 2.5.1. Let E C RTFI be a smooth minimizing cone. Suppose
that k € R and that ¢ € C°(R"1 \ {0}) is a k-homogeneous non-negative
function satisfying

A
Apre+ |A)Pe > WC in M, cot(@)en - An —Vpe-n>0 on dM,
for some A € R. If
972
A>(2 n 2k)’
4
then ¢ = 0.

Proof. Take a test function 0 < ¢ € C°(R™™1\ {0}). An integration by parts
gives

A
/VMC SV — |APep < — cho + / cot(0)n - Ancep.
M M oM

Take now 0 < f € C®(S8"), 0 < h € C*(0,00) with [h > 0, and let
0
o(wr) = f(w)h(r), where w € 8™ and r > 0. Using the coarea formula and
the homogeneity of the functions involveed, by the previous inequality we get
/r”l /erh(r)Vgc(w) Vs f(w) + "1V ye(w) - wh (r) dH™(w) dr

0 %
oo

=L R 2 AR (W) e(w) f(w)h(r " 2c(w) f(w)h(r "(w)dr
+0/r / AP @)ew) F@)h(r) + Ark—2e(w) f(w)h(r) dH" () d
< /r”_Q/rk_l cot(0)n - Anc(w) f(w)h(r) dH"™(w) dr.
0 ox

Notice now that, being ¢ k-homogeneus, Vc(w) - w = ke(w). In order to
have the same radial in any term of the inequality, we integrate by parts

[ kr"tR=21 (1) dr = — [ k(n+k—2)h(r)r"*t =3 dr, and we divide by [ h(r)r"tE=3 dr,
0 0 0
thus

/Vgc-ng— |A[20f—/cot(9)n-Ancf < (k;(n—i—k—Q)—A) /cf.
)

ox P
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Taking f = ¢, and noting that k(n+k—2) — A < — ("_42)27 if ¢ were non zero

we would have a contradiction by (2.22). O

Remark 2.5.2. Notice that, for 1 > a > 0,

VA2
2

Anr| A" + AP AP = adiv<|A|°<—2 ) AP

2 Aur|AP°
2

; a(a - 2) LAI2[V ar ]2 + A2,

= alA|*T

Fix now A € (0,1). A consequence of the Simons’ inequality (see 2.65), together
with the last computation, implies that ¢ = |A|“ satisfies

Ay A]" +[AP|A[ 2 JA]*2(1 - o)

Al

|z

2
a2l (-2 42+ (- 0(142)).

+ 2\«

Thus,ifn:3,a:%and)\:%,weget

LAl

AulAI" + 1APIAR 2 31

(2.49)

W~ |

Notice that [A|* is homogeneus of degree —a = —3 =: k. Whith n = 3,
and letting A = %,

(2—n—2k)?
S E— =0.

Thus, for a = %, |A|* satisfies the interior inequality on M in the hypothesis
of Proposition 2.5.1.

Notice that |A|* is not smooth and compactly supported, but, with an
argument similar to the one in proof of Theorem 1.3.10, we can make the
proof of Proposition 2.5.1 work also for ¢ = |A|“.

What is missing for |A|* is the boundary inequality, to which will be de-
voted the rest of this section.

A>

Lemma 2.5.3 (Sign of curvature at the boundary). Let 2 be a smooth cone
that is a minimizer of (2.1). If ent1-v # 0 on the whole M, then, at any point
xg € OM, holds

n-An>0
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Proof. Let us consider the function |V Mxn+1\2, that is well defined on the
whole M. We have

VMTni1 = epy1 — (enJrl : 1/)1/,

then
Varznii2/2 = (1= (ens1 - 1)?)/2,
and so
Vu|Varznii* /2 = —(ent1 - v)V(ens - v)
= —(ent1-v)Aeny1.

Notice that, at OM, Ae,+1 = An(ent1 - 1) = —sin(f)An, since e, 11 L Topy,
and Av = 0 = A(x)z. Therefore, at OM,

877’vM$n+1‘2/2 = sin(f) cos(0)n - An,

and we just need to prove that 9,V ap41]?/2 > 0.
A straightforward computation gives

Ap|Vuzni1]?/2 = —|Aena|* — (ent1 - v)divar (Aepi).

We want now to find a more convenient expression for divys(Ae,y1), in order to
make a comparison with |Ae, ;1|2 and establish the sign of Aps|Vzns1]|?/2.
Since Av = 0, Aepy1 = AT, where 7 := e,41 — (epy1 - V)v. Let s : @ - R
be the signed distance from M, and let us denote with an upper index the
coordinates of 7. Using the Einstein convention for repeated inexes,

diVM(AT> = (%(SijTj)
=V(As) -1+ SijTij
=V(As) -7 — (ept1 - I/)SijVZ-j — (ens1 - vi)siV”.

Now, since 7 € Ty, and As = Tr(A) = 0 on M, V(As) - 7 = 0. Moreover,
sl = (Av)" =0, and v} = s;j, so that

A Varzni1?/2 = —|Aen 1> + (eny1 - v)?A]% (2.50)

Let us call v := |V yzn11]?/2
If we knew that Apys|Varzni1]?/2 > 0 on M we could conclude the proof
by the maximum principle, but we don’t have a priori any control of (e,41 - /)
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away fromn OM. Since our hypothesis is that e,+1 - v # 0, we can define the
smooth vector field on M by

b — A6n+l

(en+1-v) ’

so that b- Vv = |Aen+1|2. Thus, v is a strong solution of the equation
Aprv+b- Vv = (ens1 - v)?|A]? >0, (2.51)

and the maximum principle gives

nAn >0 at OM.

The boundary inequality

Here we fix zp € OM \ {0}, and we write € locally in z( as a graph of a positive
function u : R™ — [0, 00), with u(xg) = 0. Up to an isometry we can assume
that Tyas(wg) = R"L, and thus

u;(zg) = 0, i< n.

As a consequence we have that Ty (7o) = R"~! @ Span(e,, u,(z0)), and thus

(
) — (en, un(x0)) vow(z) = (—Vu(z),1)
7’( 0) 1 + ’VU‘Q(wo)’ w( ) \/ 1 + ‘VU| (:C())

where we are assuming also that u,(zp) < 0, and we are calling
Y(x) = (z,u(z)). Since M lies on R", then ® is the identity on M.
Thus, taking a path () with values in OM,

uoy=0.
Taking two derivatives of this condition we get

Vi@ -7 (t) =0,

Vs -y (8 + > V- () (1) - ¢5) = 0.
=1

Taking 7 such that v(0) = x¢ and 7/(0) = e;, i < n, the second equation
becomes
upy (0)-en +uy =0, 1<n (2.52)
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The boundary condition e,y - v = cos(0) is, for x € M,
|Vul?(x) = tan?(6). (2.53)

We want to derive informiations taking derivatives of this condition. Take (t)
a path with values in M, and taking first and second derivatives of (2.53)
along v we get:

z”: u;Vuj -+ (t) =0, (2.54)

n n

ZIV% V(O +uy Ty o (0 + 30w Vugp A () (1)F =0, (255)
k=1

j=1 k=

where we indicate with the upper idexes the coordinates of 7/. Evaluating the
first equation at xg we can write,

uni(zo) = 0, 1< n, (2.56)

and by that we can also, up to an isometry, assume that V2u(zg) is diagonal,
and that u is 0O-homogeneous at x( in direction e;. By that, we can take
v (z9) = e; with i < n, and we can evaluate in zy the second equation in
(2.54), getting

"

ui + UpUnpen - Y (O) 4+ UpUni; = 0,

that is, by (2.52),
U3 — Uil + Untinii =0, i <n. (2.57)
Like in the proof of Lemma 1.3.8, we can write

V2u(z) _1

A= Ve

9

thus
|A]*(x0) = (1 + tan?( <Z ug; + (1 F tan? (9))2> (2.58)

, and the zero mean curvature condition on M at zy reads as

Zu“ = _H-Tn(@) (2.59)

<n
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n
Notice that, if i < n, Tr(Vu; ® Vu) = > wjjuj = uinuy, = 0, and in the same
i=1
way 0;|Vu|*™ = 0, for any natural number m.
For the derivative in direction 7 at xg,

‘2m

0=0n(Id) = 0n(99™") = Ongg™" + gon(g™),

thus
(g™ =—g "On(g)g".

Taking into account that Vu, ® Vu(xg) is dyagonal, and that, in our coordi-
nates, its only non zero entrance is the one in position (n,n), and that g=*(zg)
has (1 + tan?(0))~! as (n,n) entrance, we have

2
5 Vu, ® Vu,

g AT “1___ s
Ong™ (o) g Vu, ® Vug 15 tan’(0))

thus,

—VQun 4wy, tan(f) Viu -1
Tran2e)) Y an2(0)2 Y
V2u
—9 Viun © Vau, (2.60
T tan2(@y)pe i ® Ve (2:60)

and the condition Tr(9,(A o)) = 0 reads as

—Op(Ao) =

tan(f
3 i + 202 _tan®) (2.61)

Notice also that, in our coordinate system,

n-An(wo) =~ t:r’f;(e))w. (2.62)

Here we are abusing in the notation, since, during the proof, we referred at A
as an n X n matrix in our coordinates, but we recall that A can also be thought
as an (n+ 1) x (n + 1)-symmetric matrix that is zero in the normal direction
to M.
We want to find a manageable expression for the boundary term 9,|A[%.
By the choice of our coordinates,
_ Oa(JAP o)

877’14\2(3?0) = m(%)a
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and

(1 + tan?(6))d, ( |A|22° ‘b) (z0) = (1 + tan?(0))Tr(dp (A o h) A o 1))
+ g ﬁatin (Z A )
o tan(0)

(1 +tan?(6))3"

We want now to use all our previous equations in the case in which the dimen-
sion is n = 3. By homogeneity in the e; direction,

u11 = u113 = 0.

The equation (2.57), together with (2.59), gives an expression of ugg3 in terms
of us3s:
U3y 1

1223 = tan(0) tan(@)u33u22

) 1 1

=3 <tan(0)(1 T an2(0)? | tan(8)(1 1 tan2(0))>
5 2 + tan?(9)
B tan(0)(1 + tan2(6))2’

and by (2.61) we can write ugss in terms of ugs:

B Y L C)
1+ tan?(0) 33 (1 + tan2(6))2

1
U @) (1 F T2 (O] <2 + 3ta“2(9)>'

Putting everything together, and using again u3, =
can write

u?.
m, and (258), we

|A|? 01 g 2 + tan?()
2 > (w0) = —u3s tan(0)(1 + tan?(0))?
3 2 + 3tan?(0)
~ U an(0)(1 + tan(0))3

(1 +tan?(9))0s <
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+ QU33‘A|2 tan(@)
5 1 + tan?(0)
Btan(0)(1 + tan2(0))3
+ 2uz3| A|? tan()
1
tan(0)

Since ugz = —1- An(1+tan®(#))>/2, we can summarize the previous discussion
in the following theorem.

= —2U33|A’2

Theorem 2.5.4. If Q) is a smooth cone, and n = 3, then

2
&Jé’ = 2cot(f)n - An|AJ%, at OM (2.63)

Corollary 2.5.5. Letn =3. Thenc:= \A|% satisfies the hypothesis of Propo-
sitton 2.5.1.
In particular, |A| = 0.

Proof. Let o = 5. We just need to check that ¢ = |A|* satisfies
cot(8)|A|%n - An — 0,|A|* > 0, at oM.
By (2.63),

AP

A
| A|* = a|A|*20,—— = 2acot(A)n - An|A|~.

Therefore,
cot(0)| [ - Ay — B, A = (cot<e>|A|an - An) (1-2a) =0,

since o = % OJ

Let use generalize the computations to any dimension. For any n we have
the formula

Al oy

(1+ tan2(9))3n< > (z0) = (1 + tan?(0))Tr(dp (A o 1h) A o 1))

_ Zu U UnnnUnn
iin Uiy 1 —i—tan2(0))2
<n

4 tan Z L Y
u U;
"1 + tan2(0) tan (14 tan (0))2
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tan(0)
T A A
T2 (T fan(6))°

Now

. Unn
E UiinUis = ——— E uu § :’LL“

<n z<n <n

_ 3 2
= cot(f g ug; — cot(0)uny, E Uz s

i<n <n
while

_ UnnnlUnn 23 ﬂ
1+ tan2(@))2 ™1 1 tan2(0))3

_ Z UjinUnn
£~ 1 + tan?(0)
i<n

9,3 tan(0)
(14 tanz(ﬁ))3

+ tan(0)( 1 + tan Z i

 tan(6)( 1 + tan Z i

oyl tan(ﬁ)
" (1 + tan%(9))3

2
Upm Unn

1+ tan2(9)) tan()(1 + tan?(9))

N tan(@)(l ; tan Z“"

9,3 tan(6)
" (1 + tan?(0))3

Thus,

9 3
(1 -+ (00,5 = cor(0) (L + o

<n
— cot(0)upy, Z ui
<<n
ul, (2 + tan?(9))
(1 + tan?(0))3

— cot(0)

61
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— cot
cot(9) 1+tan 1+ tan2(6) Zu“

+ cot(0)up, tan (9)|A|2

= cot(f (Z Uii + (1 4 tan? (9))3>

2 + tan?(9) 9

— cot(Q)uy, -2 ) 2
cot(B)unn T ran2(9) o

2 + tan?(9) u?,,

1+ tan?(0) (1 + tan?(0))?2
+ c0t(0) Uy tan2(8 )IA!2

— cot(6 (Z Y T 1 T tan? <9>)3)

— cot(0)tnn (2 + tan?(9)) A
)

+ cot(6)tn, tan?(0)| AJ?
w3

cot(® (Zu” (1 + tan?(6))3 tin| |>

1<n

— cot(0)upy,

This proves that
Theorem 2.5.6.

Al? -
87,‘ | = cot(0) <277 - An|A? - Z A?), (2.64)

2 i=1
where (X\;)I'_, are the eigenvalues of A.
Under the assumptions of Lemma 2.5.3 notice that now we have
e The instability crytherion given by Proposition 2.5.1.
e The boundary curvature term 7 - An > 0.

e An expression of an\A\Q in terms of 1 - An, |A]* and the sum of
cubes of the elgenvalues of A.

e The Simons’ inequality.

Making a comparison with [3], the next step would be to take the right function
of the eigenvalues of A as a competitor in Proposition 2.5.1. We had no time
to find the right competitor and proving that it works. However, we leave here
our candidate as a conjecture.
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Conjecture 2.5.7. Let n =4, and let
ea e
A >0 A <0

Where A, are the eigenvalues of A.

Then, if the assumptions of Lemma 2.5.8 are satisfied, ¢ := w3 satisfies
the hypothesis of Proposition 2.5.1.

In particular, |A| = 0.

2.6 The case 4 <n <6 with ¢ close to 3

When the angle 0 is close to 7, it is just sufficient to choose the right competitor
in the Stability inequality, like in the proof of Simons’ Theorem.
We first introduce a slightly improved version of the Simons’ inequality.

Lemma 2.6.1. Let Q C R™! be an open cone with an isolated singularity at
0, such that O := M has zero mean curvature. Thenm for any \ € (0, 1),

& 4 |A 2 2 2
Ay 5 + A" > A(2 z ‘2 +[VulA|F |+ (1 =N 1+n |VarlAll“. (2.65)
Proof. Thanks to the Simons’ inequality, it is sufficient to prove that
Al? 2
Al 41412 (14 2) 1Vl

Fix p € M, and take coordinates around p given by w, like in the proof of
Theorem 1.3.9. Then, we have at p,

N
ijk=1
A=V
and . . )
APl A1 = 30 3 )
i=1 \jk=1

Thus, by the Cauchy-Schwartz inequality, and since V2u is dyagonal at p,

IVal AP <) u; (2.66)
ij=1
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Since the mean curvature of M is zero, so is its first derivative, so, by Lemma

1.3.8,
Uigi = — Z Ujji-
JFi

Thanks to the Cauchy-Schwartz inequality, for any b1, -b, real numbers,

n—1 2 n—1
(X#) <w-nxe
i=1 i=1
that, together with the previous estimates, gives,

n 2
VulAlP <3+ 30 )

i#] i=1 Nji
n
<o) Y
i#] i=1 j#i
=n)_ uy.
i#]

Combining this equation with (2.66), we get
2 n
(142wt < 3
i,5,k=1
that ends the proof. O
We need now a trace inequality involving the contact angle.

Lemma 2.6.2. Let Q C IR{’}F'H an open set with M = BQQR’}FH smooth up to
the boundary, meeting R™ at a constant angle 6. Then, for any u € C(M),

we have .
< 2.67
/u_ sin(6) /\Vu] ( )
oM M
Proof. Consider the vector field &(x) := —pr(2nt1)ent1, where pgr : [0,00) €

[0,1) is a smooth function such that ¢pr =1 on [0, R], pr = 0 on [2R, o], and
l¢z| < %. Since & - n0sin(@) at OM, thanks to the divergence theorem,

/“:sinl(m I
oM

oM
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= sinle) /diVM(U§>

M

1
sin(6

IN

) |Varul|€| + udivasé

M

1 U

—_ 2—.

sin(6) /’vMuH_ R
M

Taking the limit as R — co we obtain the thesis. O

IN

Remark 2.6.3. In the next proof, we apply the stability inequality, the in-
tegration by parts, and the trace inequality for functions not smooth and
compactly supported in R\ {0}, but an approximation argument makes
the proof below rigorous.

Proof of Theorem 2.2.3 when 0 is close to 5. .

Let p € (1, 1) to be chosen later. For any A € (0,1), by (2.65), we can wrie

Ap| AP

5 = Sdiv([ A7 2V, [4)

A A2 _ _
= p AL A2 4 p(ap — 2)| APV 4
2
> APl (- 0(142) a2 - 2)

2\
Falap (2 - 1R ). (208

Let r = |z|, and take f = f(r) to be a radial Lipschitz function compactly
supported in R"*1\ {0}. Plugging ¢ = f|A|?” into the stability inequality
(2.21) and integrating by parts, we obtain

cot(6) / n- AnlAPPs + / APP+2 2 < / Var(FIAP)?
oM M M
1
==/fﬂAW”ﬂVMLMFﬂ4|AﬁﬂvMﬂ2+2vMpﬂ%-va2
M
= / DAY 2|V 0 A RS + APV ar 2
M

f? f?
—/QAMM%+/2%MW-@%)
M oM
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By (2.64), we have

2 n
0,15 = cot0) (308 - 20 anlaP),

i=1

where ); are the eigenvalues of A. Notice now that, for any ¢ = 1 — n, by the
Cauchy-Schwartz inequality,

Nl =)
J#1
1/2
1(3%)
J#1
S vn— 1|A|a

thus

H<Vn=1> NJAl=vVn 1|4
i=1

From this, we get
A]?

anAT < 3cot(0)vn — 1|AP.

Using this bound and (2.67), we can estimate

2
cot(9) [ n-anfap s - / Lonlap

< cln)cor(6) [ f2lAP
oM

oM
cot(&) 91 112
A p+1
Sm(e)/w (£2]41)
cot (6
< (n) 0 / (2 + DIVl ANAZ £ + 20|V ar f]| A+
sin(0)
M
cot (6@ _
§C<”>sin<<e>) [ ST 2A AP 1 217V a7
M
cot(9) AIIZLA|2P-2 £2 4 §2| 4|20 +2 AP AP+
<elm) gy [ BIVaAIPIAPY /% 4+ PLAPP 1207 APV a4
M
t(0
< ) Soni) [SITuAIPIAP 22 4 24P 4 [V AP,

M
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where ¢(n) is a positive constant depending only on n. We used in the compu-
tations above that 3ab < 3a® 4 b2, ab < % + %, and that 2p+1 < 3. Plugging
this into (2.69), and using (2.68), we get

o;!wﬁp%VMMWﬂ<dm§§2+p(m+2—u—xxr+§—w))
cot (6 AP
-fZWVMfFAF%1+cuw$§&§w—muH42f?

cot(6)
sin(6)

+/MW”F@+4+%W) ) (2.70)
M

set € > 0, and define the radial lipschitz function f(r) by
rlte, r<l1
T)=
f( ) {TQ—n/Q—e'

o0
f is not compactly supported, but [ r"~2f(r) dr < oo, and thus the right hand

0
side of (2.69) is finite with this choice of f.
Like in the proof of Theorem 1.3.10, now is just a matter of computation. It
can be seen that, if § € (61(n), §) is close enough to 7, we can choose parameter
D, €, A such that, when n <6, (2.70) is satisfied if and only if |A| = 0. O
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