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’Happy or sad?’
’Sad’

’Okay. But I warn you. I’ll break your heart.’
’Already broken.’
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Abstract

In the present thesis, we study the regularity of minimizers of two
functionals.

The first one is the perimeter. A set of locally finite perimeter E
in Rn+1 is, roughly speaking, a set that supports a divergence theorem,
where the boundary measure, that is called perimeter measure, is the
n-dimensional Hausdorff measure restricted to a thiner part of ∂E: the
reduced boundary ∂∗E.

The second one is an energy whose stationary points model the equi-
librium state of incompressible fluids in absence of gravity: Aθ(E) :=
Hn(∂∗E ∩ Rn+1

+ )− cos(θ)Hn(∂∗E ∩ Rn), where Rn+1
+ is the upper half-

space with boundary Rn, E is a set of locally finite perimeter in Rn+1
+ ,

and θ is the contact angle between ∂∗E ∩ Rn+1
+ and Rn (whenever E is

a stationary point for Aθ).
In both cases it was proved that, if E is a minimizer, ∂E ∩H is a

smooth hypersurface away from a closed set Σ(E), called the singular set
of E. Here H = Rn+1 when E minimizes the perimeter, and H = Rn+1

+

when E minimizes A. In both cases the Federer’s dimension reduction
principle allows to relate the Hausdorff dimension of the singular set to
the analysis of minimizing cones that are smooth away from the ori-
gin. Thus, in this thesis we focus on the study of cones, and we prove
the Simons’ Theorem, obtaining as a consequence that Σ(E) is empty
whenever E is a perimeter minimizer and n ≤ 6.

Then, we follow the work of Chodosh, Edelen and Li in [2], proving,
for a minimizer E of Aθ, that Σ(E) is empty when n ≤ 3, when n = 4
and θ is small enough, and when n ≤ 6 and θ is close enough to π

2 .
Moreover, we give a new proof of the case n = 3, based on the

analogous work of Jerison and Savin (see [3]) about the regularity of
minimizers of the Alt-Caffarelli functional. Assuming the additional hy-
pothesis that E is the region below the graph of a Lipschitz function, we
think that would be possible to apply the same arguments also in the
case n = 4 for small contact angles.
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Summary

In the first Chapter, we start by introducing the theory of sets of locally finite
perimeter, recalling their basic properties, and the definition of perimeter mini-
mizer. We then prove the first and second variation formulae for the perimeter.
We obtain that, for a smooth perimeter minimizer E with boundary ∂E, ∂E
has zero mean curvature, and E satisfies a stability inequality (1.7). The sta-
bility inequality carries the information of A, i.e. the tangential gradient of the
external unit normal to E. We briefly explain that the Federer’s dimension re-
duction argument, together with the regularity of the reduced bounbdary ∂∗E
of a perimeter minimizer E, allow us to focus on the study of the non-existence
of open cones minimizing the perimeter with an isolated singularity. In this
way, we can estimate the Hausdorff dimension of the singular set of a mini-
mizer. We then prove the Simons’ inequality (1.3.9) for cones with an isolated
singularity, and with zero mean curvature at the boundary. We finally prove
the Simons’ Theorem(1.3.10), about the non existence in Rn ( 2 ≤ n ≤ 7), of
smooth cones that minimize the perimeter, and with an isolated singularity.
The strategy of this proof is to plug a competitor depending on |A| in the
stability inequality, and then to use the Simons’ inequality in order to prove
that |A| must be zero, and thus the cone must have been an half-space.

In the second Chapter we introduce the capillary functional (2.1) Aθ, de-
fined for sets of locally finite perimeter in Rn+1

+ . Here θ will be the fixed contact
angle that smooth minimizers of Aθ form with Rn := ∂Rn+1

+ . We compute the
first and the second variation of this functional, and we derive the stationary
conditions and a stability inequality for smooth minimizers. Also in this case,
in order to estimate the Hausdorff dimension of the singular set of a smooth
minimizer, it can be proved that is sufficient to look at smooth cones with an
isolated singularity.

We present the results obtained by Edelen, Chodosh, and Li in [2]. Here,
the non-existence of smooth minimizing cones depends not only on the dimen-
sion, but also on the contact angle θ. Again, the strategy is to prove that any
smooth cone with an isolated singularity that minimizes Aθ satisfies |A| = 0.

We prove, in dimension n = 3, that for any contact angle θ, there are no
smooth minimizing cones with an isolated singularity. The arguments in this
dimension use the stability inequality, like in the proof of Simons’ Theorem.
However, here is crucial the use of Gauss-Bonnet theorem and complex anal-
ysis, that are applicable only because the intersection of a cone with S3 has
dimension 2.

Also in dimension n ≤ 6, we prove the non-existence of smooth minimizing
cones through the stability inequality. But in this case, we have the additional
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constraint of choosing angles θ ∈ (π2 − ϵ, π2 + ϵ), where ϵ is a small constant
depending on the dimension n only.

Finally, in dimension n = 4, we deal with contact angles θ close to 0.
It is interesting how, in this case, Edelen, Chodosh, and Li, don’t use the
stability inequality. Instead, they find a connection, for small angles, between
minimizers of Aθ in R5, and minimizers of the Alt-Caffarelli functional in
R4. They prove that, for small angles θ, any smooth cone minimizing Aθ

can be written as a graph of a Lipschitz function over Rn. They prove also
that, for any sequence Ωi of smooth cones minimizing Aθi , and ui : Rn → R
being the Lipschitz functions such that ∂Ωi ∩ Rn+1

+ = graph(ui)⌞{u > 0}, the
rescaled ui

tan(θi)
converges to a one-homogeneus minimizer of the Alt-Caffarelli

functional in R4. Thanks to the work of Jerison and Savin in [3], the only one-
homogeneus minimizers of the Alt-Caffarelli functional in dimension 4 are flat
solutions. Using this, Edelen, Chodosh, and Li prove that, for small angles,
also smooth minimizing cones of Aθ are flat.

In [3], Jerison and Savin emulate in some sense the techniques used in deal-
ing with smooth cones with an isolated singularity minimizing some functional.
Namely, they have a stability inequality, they have stationary conditions, and
they have an interior inequality similar to the Simons’ inequality. Also in their
case there is a boundary term, as well as in the stability inequality for Aθ(see
(2.21)). They provide a boundary inequality in order to deal with their bound-
ary term. They then use a competitor in the stability inequality depending
on a power of |∇2u| in dimension n = 3, and depending on a function of the
eigenvalues of ∇2u in dimension n = 4. Here u is a one-homogeneus minimizer,
and |∇2u| can be thought as the analogous of |A|.

Since this way to deal with the problem seemed more natural to us, we
adapted their ideas to the context of Aθ. Following this path, we were able
to provide a new proof of the non-existence of smooth cones minimizers of
Aθ in Rn+1

+ , when n = 3. If we assume that the smooth cone is the region
below a graph of a Lipschitz function, making the comparison with the work
of Jerison and Savin, we think that deal with the case n = 4 is just a matter of
computation. Namely, we propose a competitor that should work in dimension
n = 4, and we refer to [3] for a proof.



CHAPTER 1
Regularity of perimeter

minimizers

1.1 Definitions and basic properties

Here we define sets of locally finite perimeter and some of their properties.
Our main reference for this Chapter is [1].

Let E ⊂ Rn be a Lebesgue measurable set. We say that E is a set of locally
finite perimeter if the real valued functional

T →
∫
E

divT, T ∈ C∞
c (Rn;Rn)

is bounded, with respect to the uniform norm on C∞
c (B(0, R);Rn), for any

R > 0. Using the Riesz representation Theorem, it is immediate to see that
E has locally finite perimeter if and only if there exists a unique Rn-valued
Radon measure µE such that∫

E

divT =

∫
Rn

T · dµE , ∀T ∈ C∞
c (Rn;Rn).

We say that µE is the Gauss-Green measure of E, and we call its total variation
|µE | the perimeter measure of E, that will be denoted by

P (E;F ) = |µE |(F ), P (E) = |µE |(Rn),

3
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for any F ⊂ Rn. We call P (E) the perimeter of E, and P (E;F ) the relative
perimeter of E in F . If E is an open set with C1−boundary, the divergence
theorem says that µE = νEHn−1⌞∂E, where νE is the outer unit normal of E,
and Hn−1 is the (n− 1)−dimensional Hausdorff measure. For a general set of
locally finite perimeter, we always have

spt(µE) ⊂ ∂E,

but we can define a unit normal only on a portion of the boundary.

Definition 1.1.1. The reduced boundary of E, that we denote ∂⋆E, is the
set of those x ∈ sptµE such that the limit lim

r→0+

µE(B(x,r))
|µE |(B(x,r)) =: νE(x) exists and

belongs to Sn−1. We call νE the measure-theoretic outer unit normal to E.

As one would expect, sets of locally finite perimeter in R are not of interest,
as they are just a countable union of intervals.

Proposition 1.1.2. A Lebesgue measurable set E ⊂ R is of locally finite
perimeter if and only if it is equivalent to a countable union of open intervals
lying at mutually positive distance.

In the previous statement we used the following definition.

Definition 1.1.3. Let E and E′ two Lebesgue measurable sets. We say that
E is equivalent to E′ if

|E∆E′| = 0.

Remark 1.1.4. Let E and E′ be two equivalent sets. Then, E is of locally
finite perimeter if and only if E′ is of locally finite perimeter. In this case,

µE = µE′ .

There exists a powerful carachterization of µE and νE that is given by the
De Giorgi’s structure theory. We summarize it here with the next theorem.

Theorem 1.1.5. If E is a set of locally finite perimeter, ∂⋆E is (n − 1)-
rectifiable, and we have

µE = νEHn−1⌞∂⋆E, |µE | = Hn−1⌞∂⋆E.

Moreover, if x ∈ ∂⋆E, then νE(x) is orthogonal to ∂⋆E at x, in the sense that
there is the weakly*-convergence of measures

Hn−1⌞

(
∂⋆E − x

r

)
⋆
⇀ Hn−1⌞νE(x)

⊥ as r → 0+,
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and it is outer to E at x, in the sense that there is the local convergence of sets

E − x

r

loc−→ {y ∈ Rn : y · νE(x) ≤ 0} as r → 0+.

In the previous Theorem, by local convergence of a sequence of sets Ei
loc−→

F , we mean that the sequence (1Ei)i∈N converges to 1F in L1
loc(Rn). An

important property of sets of locally finite perimeter is the lower semicontinuity
of perimeter.

Proposition 1.1.6. If {Eh} is a sequence of sets of locally finite perimeter in
Rn, with

Eh
loc→ E, lim sup

h→∞
P (Eh;K) <∞,

for any compact set K in Rn, then E is of locally finite perimeter in Rn,
µEh

∗
⇀ µE and, for every open set A ⊂ Rn, we have

P (E;A) ≤ lim inf
h→∞

P (Eh;A).

Sets of locally finite perimeter are closed for union and intersection, and
satisfy a compactness theorem. Moreover, the intersection with an half-space
decreases the perimeter.

Lemma 1.1.7. If E and F are sets of locally finite perimeter in Rn, then so
are E ∪ F and E ∩ F , and, for A ⊂ Rn open,

P (E ∪ F ;A) + P (E ∩ F ;A) ≤ P (E;A) + P (F ;A).

Lemma 1.1.8. Let E be a set of finite perimeter and let e ∈ Sn. Then, for
almost every t ∈ R, E ∩ {x · e < t} is a set of finite perimeter, and

P (E ∩ {x · e < t}) ≤ P (E)

Theorem 1.1.9. If {Eh}h∈N are sets of locally finite perimeter in Rn with

sup
h∈N

P (Eh;BR) <∞, ∀R > 0,

then there exists E of locally finite perimeter such that, up to a subsequence

Eh
loc→ E, µEh

∗
⇀ µE .

Notice that this version of the compactness theorem gives only the weak*
convergence of the measures µE , and don’t imply the convergence of the total
variations |µE |.

We give now the notion of perimeter minimizer.
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Definition 1.1.10 (Perimeter minimizer). Let E be a set of locally finite
perimeter in Rn that satisfies spt(µE) = ∂E, n ≥ 2, and let A be an open set.
We say that E is a perimeter minimizer in A if, for any r > 0, any x ∈ Rn,
and any set of locally finite perimeter F that sarisfies E∆F ⊂⊂ B(x, r) ∩ A,
the following inequality holds

P (E;B(x, r)) ≤ P (F ;B(x, r)).

If A = Rn, we say that E is a global perimeter minimizer, or just a perimeter
minimizer.

Remark 1.1.11. The assumption spt(µE) = ∂E is not restrictive. Indeed, it
can be proven that, for any set of locally finite perimeter E, there exists a set
of locally finite perimeter E′ that is equivalent to E, and such that

∂E′ = spt(µE) = spt(µE′).

1.2 First and Second Variation of Perimeter

If E is a perimeter minimizer in an open set A, the perimeter decreases under
small perturbations of E in a compact subset of A. We can perform the per-
turbations continuously in the time t, and then take first and second derivative
in t in order to obtain stationarity and stability conditions for E.

Definition 1.2.1. Let A ⊂ Rn be an open set, let ϵ > 0, and let (ft)|t|<ϵ be
a one parameter family of diffeomorphisms. We say that (ft)|t|<ϵ is a local
variation in A if there exists a compact subset K of A such that

f0(x) = x, ∀x ∈ Rn,
{x ∈ Rn : ft(x) ̸= x} ⊂ K, ∀|t| < ϵ.

If (ft)|t|<ϵ is a local variation in A, we say that T (x) := ∂ft
∂t (x, 0) is the initial

velocity of (ft)|t|<ϵ.

Remark 1.2.2. If (ft)|t|<ϵ is a local variation in A, its initial velocity T has
compact supoport in A, ft(A) = A, and, for any E ⊂ Rn, ft(E)∆E ⊂⊂ A.
Moreover, the following Taylor’s expansions holds uniformly in x ∈ Rn,

ft(x) = x+ tT (x) +O(t2), ∇ft(x) = Id+ t∇T (x) +O(t2), (1.1)

where with ∇T (x) we denote the matrix representing the differential of T in
x with respect to the canonical basis of Rn.
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We say that a set of locally finite perimeter E is stationary for perimeter
in an open bounded set A if sptµE = ∂E and

d

dt
P (ft(E);A)|t=0

= 0, (1.2)

for any (ft)|t|<ϵ local variation in A. If, for any local variation in A, holds also

d2

dt2
P (ft(E);A)|t=0

≥ 0, (1.3)

we say that E is stable for perimeter in A.

Remark 1.2.3. If E is a perimeter minimizer in A, and (ft)|t|<ϵ is a local
variation in A, since ft(E)∆E ⊂⊂ A, we have that P (E;A) ≤ P (ft(E);A).
Thus, if we knew that any path P (ft(E);A) were regular enough we could
conclude that E is stationary and stable for the perimeter in A. We will prove
this in the case of E open set with smooth boundary.

Conversely, if we start from T ∈ C∞
c (A), there are two canonycal ways to

construct a local variation that has T has initial velocity.
The first method consists of setting

ft(x) = x+ tT (x),

tho only non trivial property to check is that ft is a diffeomorphism for t small
enough. That follows by using the inverse function theorem and the Neumann
series. Through this chapter we will use only the previous method, but later
we will need also to consider a local variation given by the flow of an ODE:

∂

∂t
f(t, x) = T (f(t, x)),

f(0, x) = x.

In order to compute the first and the second variation of the perimeter we
need a Lemma first.

Lemma 1.2.4. Let Z be a real valued n× n-matrix. Then

(Id+ tZ)−1 = Id− tZ + t2Z2 +O(t3),

det(Id+ tZ) = 1 + tTr(Z) +
t2

2
(Tr(Z)2 − Tr(Z2)) +O(t3)
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Proof. The first equation follows since, for t small enough, the Neumann series
gives (Id+ tZ)−1 =

∑
i∈N

(−tZ)i.

In order to prove the second equation, let (λi)
n
i=1 the complex eigenvalues

of Z, and let P ∈ GL(n,C) such that Y := PZP−1 is upper triangular. Thus

det(Id+ tZ) =

n∏
i=1

(1 + tλi) = 1 + t

n∑
i=1

λi + t2
∑
i<j

λiλj +O(t3).

Notice now that
n∑
i=1

λi = Tr(Z), and that

∑
i<j

λiλj =
1

2

n∑
i,j=1

λiλj −
1

2

n∑
i=1

λ2i =
1

2
(Tr(Z)2 − Tr(Y 2)),

and Tr(Y 2) = Tr(PZ2P−1) = Tr(Z2), ending the proof.

We are now ready to compute the first variation of perimeter.

Theorem 1.2.5 (First variation of perimeter). Let A be an open bounded set
in Rn, E be an open set with smooth boundary in A, and (ft)|t|<ϵ be a local
variation in A with initial velocity T . Then,

P (ft(E);A) = P (E;A) + t

∫
∂E

divET dHn−1 +O(t2), (1.4)

where divET (x) := divT (x) − νE(x) · ∇T (x)νE(x) is the boundary divergence
of T on E.

Proof. Let us call gt := f−1
t . Notice that ft(E) is an open set with boundary

∂ft(E) = ft(∂E) that is smooth in A = ft(A), and with outer normal given
by

νft(E)(x) =

(
∇gt(x)

)⋆
νE(gt(x))∣∣∣∣(∇gt(x))⋆νE(gt(x))∣∣∣∣ .

Thus, by the tangential area formula,

P (ft(E);A) =

∫
ft(∂E∩A)

1 dHn−1 =

∫
∂E∩A

JEft(x) dHn−1(x),
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where JEft(x) is the tangential jacobian on ∂E, given by JEft(x) := |det(A)|,
where A is the (n− 1)× (n− 1)-matrix that represents the linear application
dft(x) : T∂E(x) → Tft(∂E)(x) with respect to any orthonormal basis of T∂E(x)
and any orthonormal basis of Tft(∂E)(x). Fix such two orthonormal basis and
complete them, with νE(x) and νf(E)(x), to orthonormal basis of Rn. Thus,
in those basis, dft(x) : Rn → Rn is given by ∗

∗
0 . . . 0 ∇ft(x)νE(x) · ∇ft(x)−∗νE(x)

|∇ft(x)−∗νE(x)|

A
 =

=

 ∗
∗

0 . . . 0 |∇ft(x)−∗νE(x)|−1

A
,

that means Jft(x)|∇ft(x)−∗νE(x)| = JEft(x).
Using (1.1) and Lemma 1.2.4 we can write

Jft(x) = det(Id+ t(∇T (x) +O(t))) = 1 + tdivT +O(t2),

|∇ft(x)−∗νE(x)| = |(Id+ t(∇T ∗ +O(t)))−1νE(x)|
= |νE(x)− t∇T ∗νE(x) +O(t2)|
= 1− νE(x) · ∇T ∗νE(x) +O(t2)

= 1− tνE(x) · ∇TνE(x) +O(t2),

where we used that νE(x) = 1, and that the estimates are uniform in x ∈ Rn.
Putting the previous equations together we get

JEft(x) = 1 + tdivET (x) +O(t2),

and an integration over ∂E ∩A ends the proof.

Remark 1.2.6. We could have stated the previous theorem for a generic E of
locally finite perimeter, and the proof is the same, but we would have needed
an area formula for set of locally finite perimeter. However, since we are going
to work only with sets that are regular up to a point, the statement above is
sufficient for our purpose.

We will make use in particular of the following Corollary:
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Corollary 1.2.7. Let E be an open set with smooth boundary. If E is a
perimeter minimizer in the open set A, then

H(x) = 0, ∀x ∈ ∂E ∩A, (1.5)

where H is the mean curvature of ∂E.

Proof. Take a smooth vector field T that has compact support in A, let R >
0 such that spt(T ) ⊂ B(0, R) ∩ A, and let (ft)|t|<ϵ be a local variation in
B(0, R) ∩ A with initial velocity T . Thanks to Theorem 1.2.5 and Remark
1.2.3 this means ∫

∂E

divET dHn−1 = 0,

and the tangential divergence Theorem implies∫
∂E

HνE · T dHn−1 = 0,

thus H = 0.

We are going now to compute the second variation of perimeter. Although
our assumption of smoothness was not necessary in Theorem 1.2.5, now we
want to take dervatives of the outer normal of a set of locally finite perimeter
E, therefore the request of some regularity on the boundary is not removable.

Let E be an open set with smooth boundary in an open set A ⊂ Rn. By
the existence of a tubular neighbourhood of ∂E ∩A in A, we can deduce that
there is an open set A′ with A ∩ ∂E ⊂ A′ ⊂ A such that the signed distance
function sE : Rn → R of E

sE(x) :=

{
dist(x, ∂E), x ∈ Rn \ E,
−dist(x, ∂E), x ∈ E,

satisfies sE ∈ C∞(A′). Let us define

NE = ∇sE , AE = ∇2sE , onA′.

Notice that NE is an extension of the outer unit normal νE and satisfies
|NE | ≡ 1, while AE is a symmetric matrix that we call the second funda-

mental form of ∂E. Notice that the trace of AE is the mean curvature of ∂E,
and that the squared norm of the second fundamental form |A|2 =

∑
i,j
A2
ij is

invariant under change of coordinates, since |A|2 = Tr(A2).
We compute now the second variation of perimeter under local variations

with initial velocity proportional to NE .
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Theorem 1.2.8 (Second variation of perimeter). Let E be an open set with
smooth boundary in the open set A, let B ⊂ A be open and bounded, and let
ζ ∈ C∞

c (B). If (ft)|t|<ϵ is a local variation with initial velocity T = ζNE ∈
C∞
c (B;Rn), then

d2

dt2
P (ft(E);B)|t=0

=

∫
∂E

|∇Eζ|2 + (H2
E − |AE |2)ζ2 dHn−1. (1.6)

In particular, if E is a perimeter minimizer in A, then∫
∂E

|∇Eζ|2 − |AE |2ζ2 dHn−1 ≥ 0, (1.7)

Proof. As in the proof of Theorem 1.2.5, we have

P (ft(E);B) =

∫
B∩∂E

Jft|∇f−∗
t νE | dHn−1, (1.8)

and, by the Theorem of differentiation under the integral sign, we get that the
function t → P (ft(E);B) is smooth in a neighbourhood of zero. In order to
ease the notation we assume that ft(x) = x+Tx. The following relations hold

∇T = ζAE +NE ⊗∇ζ,
(∇T )2 = ζ2A2

E + ζ(NE ⊗∇ζ)AE + (NE · ∇ζ)NE ⊗∇ζ,
Tr(∇T ) = ζHE +NE · ∇ζ,
Tr((∇T )2) = ζ2|AE |2 + (NE · ∇ζ)2

where we used the notation v ⊗ w := vw⋆ for any v, w ∈ Rn, we used the
relations

AE(NE ⊗ w) = (AENE)⊗ w = 0⊗ w = 0,

(v ⊗ w)2 = (vw⋆)(vw⋆) = v(w⋆v)w⋆ = (v · w)v ⊗ w,

Tr(v ⊗ w) =
∑
i

viwi = v · w,

and we used that AE is symmetric in computing

(NE · ∇ζ)AE = NE∇ζ⋆AE = NE(AE∇ζ)⋆,
Tr((NE · ∇ζ)AE) = NE · (AE∇ζ) = N⋆

EAE∇ζ = (AENE)
⋆∇ζ = 0 · ∇ζ = 0.
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Now, by using Lemma 1.2.4, we can write

Jft = det(Id+ t∇T ) = 1 + tTr(∇T ) + t2

2
(Tr(∇T )2 − Tr(∇T 2)) +O(t3)

= 1 + t(ζHE +NE · ∇ζ) + t2

2
(ζ2H2

E − ζ2|AE |2 + 2ζHENE · ∇ζ) +O(t3).

Concerning the other factor in JEft,

(∇ft)−⋆NE = (Id+ t(∇T )⋆)−1NE =

= NE − t∇T ⋆NE + t2(∇T ⋆)2NE +O(t3).

Since |NE | = 1, if we call γ(t) = (∇ft)−⋆NE , we can compute

|γ(t)| = 1 + γ(0) · γ′(0)t+
(
γ(t)

|γ(t)|
· γ′(t)

)′
(0)

t2

2
+O(t3)

= 1− tNE · ∇T ⋆NE+

+
t2

2
(2NE · (∇T ⋆)2NE + |∇T ⋆NE |2 +−(NE · ∇T ⋆NE)

2) +O(t3).

We can make more explicit this espression using the previous relations:

∇T ⋆NE = ∇ζ,
NE · (∇T ⋆)2NE = ζNE ·AE∇ζ + (∇ζ ·NE)

2

= (∇ζ ·NE)
2,

|∇Eζ|2 = |∇ζ|2 − |∇ζ ·NE |2.

Therefore, we can finally multiply the develops of Jft and of |(∇ft)−⋆NE |,

Jft|(∇ft)−⋆NE | = 1 + tζHE+

+
t2

2
(|∇Eζ|2 + ζ2(H2

E − |AE |2)) +O(t3),

and, since this develop is uniform in x ∈ Rn, an integration ends the proof.

1.3 Analysis of cones

We first recall the definition of cone.

Definition 1.3.1. An open set Ω ⊂ Rn is a cone with vertex at 0 if , for any
x ∈ Ω and any λ > 0, λx ∈ Ω. We say that the cone is smooth if it has smooth
boundary in Rn \ 0.
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The first part of this section is devoted to explain why we are interested in
studying cones.

It can be proven the following powerful regularity Theorem for perimeter
minimizers

Theorem 1.3.2. If A ⊂ Rn is an open set, and E is a perimeter minimizer
in A , then A ∩ ∂∗E is a smooth hypersurface.

What is left of the boundary of E is the so-called singular set

Σ(E;A) := A ∩ (∂E \ ∂∗E).

Definition 1.3.3. If a cone Ω ⊂ Rn is a perimeter minimizer such that

Σ(Ω) := Σ(Ω;Rn) ̸= ∅,

we say that Ω is a singular minimizing cone.
If

Σ(Ω) = {0},

we say that Ω is a smooth minimizing cone.

The analysis of the singular set is related to the study of singular minimiz-
ing cones in Rn. Indeed, whenever x is a singular point, the rescalings E−x

r
of E at x converge, as r → 0, to a cone K, which is singular at 0, and is a
perimeter minimizer in Rn .

Theorem 1.3.4. Let E be a perimeter minimizer in an open set A ⊂ Rn, let
x ∈ Σ(E;A), and let, for r > 0, Ex,r := E−x

r .
Then there exists a singular minimizing cone Ω ⊂ Rn, such that, up to a

subsequence

Ex,r
loc→ Ω, µEx,r

∗
⇀ µΩ, |µEx,r |

∗
⇀ |µΩ|, as r → 0.

A singular minimizing cone may have more singular points than 0. This
issue is solved by the so called Federer’s dimension reduction principle.

Theorem 1.3.5 (Dimension reduction principle). Let Ω be a singular mini-
mizing cone in Rn, and let x0 ∈ Σ(K), x0 ̸= 0. Then, up to a subsequence and
up to a rotation,

Ωx0,r
loc→ F × R, as r → 0,

where F is a singular minimizing cone in Rn−1.
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We need also a Lemma that gives a lower bound on the dimensions in
which there could exist a singular cone Ω with Σ(Ω) ̸= {0}.

Lemma 1.3.6. If Ω is a singular minimizing cone in Rn, x0 ∈ Σ(Ω), and
x0 ̸= 0, then n ≥ 3.

The last Theorems and the last Lemma allow to relate the Hausdorff di-
mension of the singular sets to the analysis of the perimeter minimizing cones
in Rn. Precisely, Federer proved the following Theorem

Theorem 1.3.7. There is a critical dimension n∗ (defined as the first dimen-
sion n in which there is a smooth minimizing cone), such that

• if n < n∗, then the singular set Σ(E;A) is empty for any perimeter
minimizer E in an open set A ⊂ Rn;

• if n = n∗, then for any perimeter minimizer E in an open set A ⊂ Rn,
the singular set Σ(E;A) is a discrete set of points;

• if n > n∗, then for any perimeter minimizer E in an open set A ⊂ Rn,
the Hausdorff dimension of Σ(E;A) is at most n− n∗, that is:

Hn−n∗+ε(Σ(E;A)) = 0 for every ε > 0.

Proof. We prove just the first part of the statement. If n∗ = 1, 2 there is
nothing to prove. If 2 ≤ n < n∗, let E ⊂ Rn a perimeter minimizer in some
open set A. If there exists x ∈ Σ(E;A), then, by Theorem 1.3.4, there exists a
singular minimizing cone Ω in Rn. Since n < n∗, there exists x ∈ Σ(Ω) \ {0}.
Then, by Lemma 1.3.6, n ≥ 3. By Theorem 1.3.5, there exists a singular
minimizing cone in Rn−1. Since 2 ≤ n−1 < n∗, we can iterate this construction
a finite number of times, getting n ≥ n∗, that is a contradiction.

For the rest of this section Ω will be always a smooth cone.
It is known that if M is a Riemannian manifold and p ∈ M , there exists

a coordinate system around p such that the metric is the identity at the first
order in p. In order to obtain more manageable expressions for the objects
that we want to deal with, we will describe an explicit such coordinate system.
If x0 ∈ ∂Ω \ {0}, up to a rotation and a translation, we can assume that x0
is proportional to e1 and that, locally in x0, Ω is the region above the graph
of a smooth function u : Rn−1 ⊃ U → R such that u(x0) = 0, ∇u(x0) = 0,
∇2u(x0) is dyagonal and such that u is 1-homogeneus in the e1-direction at
x0, where e1 is the first vector of the canonical basis of Rn.
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Lemma 1.3.8. Let Ω and u as above. Then

νΩ(x, u(x)) =
(∇u(x),−1)√
1 + |∇u(x)|2

,

g(x, u(x)) = Id+∇u⊗∇u,

A =
1√

1 + |∇u|2
g−1∇2u,

∂iA ◦ ψ(x0, 0) = ∇2ui(x0), i ≤ n

∂i∂jA ◦ ψ(x0, 0) = −∇ui · ∇uj∇2u(x0)− (∇ui ⊗∇uj +∇uj ⊗∇ui)∇2u(x0) +∇2uij(x0), i ≤ n

in particular

HΩ(x0) = ∆u(0),

|AΩ|2(x0) = |∇2u(0)|2.

Proof. u induces a parametrization of ∂Ω given by ψ(x) := (x, u(x)), thus
Tψ(x)∂Ω = Span{(ei, ui(x))} = (∇u(x),−1)⊥, and the sign of the outer normal
is fixed provided that Ω is the region above the graph of u. Since g[ψi, ψj ] =
ψi · ψj = δij + uiuj , g = Id + ∇u ⊗ ∇u. Let Ã be the matrix representing,
in the coordinates induced by ψ, the scalar product induced by the symmetric
endomorphism dνΩ(ψ(x)) : Tx∂Ω → Tx∂Ω. It is well known that A = g−1Ã,
and

ψi · Ãψj = ψi · (νΩ ◦ ψ)j

= (ei, ui) · (
(∇uj , 0)√
1 + |∇u|2

−∇uj · ∇u
(∇u,−1)

(1 + |∇u|2)3/2
)

=
uij√

1 + |∇u|2
,

thus A = g−1∇2u 1√
1+|∇u|2

. Moreover, by the Neumann series, and taking into

account that ∇u(x0) = 0,

g−1 = Id−∇u⊗∇u+ |∇u|2∇u⊗∇u+ o(|∇u|4),

noticing that first and second derivatives of o(|∇u|2(x)) at x0 are 0. Finally,

∂i∂j
1√

1 + |∇u|2
(x0) = −∂i(∇uj · ∇u(1 + |∇u|2)−3/2)(x0) = −∇uj · ∇ui.

Taking the derivatives of A at x0 and taking into account the previous esti-
mates end the proof.
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Theorem 1.3.9 (Simons inequality). Let Ω be an open cone with zero mean
curvature. Then,

|A|4 − |∇∂Ω|A||2 +
1

2
∆∂Ω|A|2 ≥

2|A|2

|x|2
, (1.9)

whenever |A|(x0) ̸= 0

Proof. Take x0 and u as above. Notice that it is sufficient to prove the thesis
at x0 under the coordinates induced by u. Computing and using that A is
symmetric,

∇∂Ω|A|2(x, u(x)) =
n∑
i=1

∂i(|A|2 ◦ ψ)(x)(ei, ui(x))(1 + |ui(x)|2)−1,

thus,
∇∂Ω|A|2(x0) = ∇(|A|2 ◦ ψ)(x0),

and

∆∂Ω|A|2(x0) =
n∑
j=1

1√
det(g)

∂j(
√
det(g ◦ ψ)∂j(|A|2 ◦ ψ)(1 + |uj |2)−1)(x0)

= ∆(|A|2 ◦ ψ)(x0),

where we used that ui(x0) = 0, that ∂j(g ◦ ψ)(x0) = 0, that
∂j(

√
det(g ◦ ψ))(x0) = dId

√
det(·)[∂j(g ◦ ψ)(x0)], and that

∂j(1 + |uj |2)−1(x0) = −2ujujj(x0)(1 + |uj |2(x0))−2.
Using the previous Lemma, we can compute

|∇∂Ω|A||2(x0) =
1

4|A|2
|∇(|A|2 ◦ ψ)|2(x0)

=
1

4|A|2
n∑
i=1

|∂i(Tr(A2 ◦ ψ))|2

=
1

|A|2
n∑
i=1

(Tr(A∂iA))2(x0)

=
1

|A|2
n∑
i=1

(Tr(∇2u∇2ui))
2(x0)

=
1

|A|2
n∑
i=1

( n∑
j,k=1

ujkuijk

)2

(x0),
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and

∆(|A|2 ◦ ψ)
2

(x0) =
n∑
i=1

Tr(A∂ii(A ◦ ψ)) + |∂i(A ◦ ψ)|2(x0)

=
n∑
i=1

n∑
j,k=1

u2ijk(x0)+

−
n∑
i=1

u2ii|∇2u|2 − 2Tr(∇ui ⊗∇ui(∇2u)2) + Tr(∇2uii∇2u).

Taking into account that ∇2u(x0) is diagonal, that ∇2u(x0) = A(x0), and

that, for any two matrices B and C holds the equality Tr(BC) =
n∑

j,k=1

BjkCkj ,

we can write

∆(|A|2 ◦ ψ)
2

(x0) = −|A|4 − 2
n∑
i=1

u4ii +
n∑

i,j=1

uiijjujj+

+

n∑
i,j,k=1

u2ijk.

Notice now that Tr(A ◦ ψ) = H ◦ ψ is identically zero on the domain of
definition of ψ, and in particular, using again the previous Lemma and the
fact that ∇2u(x0) is diagonal, we get

0 = ∂j∂jTr(A ◦ ψ)(x0) = Tr(∂j∂j(A ◦ ψ))(x0)
= −|∇uj |2∆u(x0)− 2u3jj +∆ujj

= −2u3jj +∆ujj .

Using this relation, we obtain

−2

n∑
i=1

u4ii +

n∑
i,j=1

uiijjujj = −2

n∑
i=1

u4ii +

n∑
j=1

∆ujjujj

= −2
n∑
i=1

u4ii + 2
n∑
j=1

u4ii = 0,

thus
∆(|A|2 ◦ ψ)(x0)

2
= −|A|4 +

n∑
i,j,k=1

u2ijk.
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Therefore, the left hand side of the (1.9) is equal to
n∑

i,j,k=1

u2ijk −
1

|A|2
n∑
i=1

( n∑
j,k=1

ujkuijk

)2

(x0) =

= |A|−2

( n∑
i,j,k,r,l=1

u2ijku
2
rl −

n∑
i=1

( n∑
j,k=1

ujkuijk

)2)
.

Notice now that, relabeling the indexes, holds
n∑
i=1

( n∑
j,k=1

ujkuijk

)2

=

n∑
k=1

( n∑
i,j=1

uijuijk

)2

=
n∑
k=1

n∑
i,j=1

uijkuij

n∑
r,l=1

urlkurl,

and a simple computation shows that
n∑

i,j,k,r,l=1

(u2ijku
2
rl − uijkuijurlkurl) =

1

2

∑
i,j,k,r,l

(urluijk − uijurlk)
2.

We can then roughly estimate∑
i,j,k,r,l

(urluijk − uijurlk)
2 ≥

n∑
k=1

n∑
j,r,l=2

(urlu1jk − u1jurlk)
2

+

n∑
k=1

n∑
i,r,l=2

(urlui1k − ui1urlk)
2 +

n∑
k=1

n∑
i,j,l=2

(u1luijk − uiju1lk)
2

+
n∑
k=1

n∑
i,j,r=2

(ur1uijk − uijur1k)
2 = 4

n∑
k=1

n∑
i,j,r=2

(ur1uijk − uijur1k)
2

= 4
n∑
k=1

n∑
i,j,r=2

u2iju
2
r1k,

where in the last inequality we used again that ∇2u(x0) is diagonal. Moreover,
νΩ is 0-homogeneus in direction e1 at x0, therefore A(x0)e1 = 0, and this means

that ui1(x0) = 0, and thus
n∑

i,j=2
u2ij = |A|2. On the other hand, denoting by

Aij the coordinates of A, and being A −1− homogeneus at x0 in direction e1,

u1ij(x0) = ∂1(Aij ◦ ψ)(x0) = −Aij(x0)
|x0|

,

that ends the proof.
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We are finally ready to prove the celeber Simons’ Theorem. (see [5])

Theorem 1.3.10 (Simons’ Theorem). There are no smooth minimizing cones
in Rn, if 2 ≤ n ≤ 7.

Proof. Assume by contradiction that Ω is a smooth minimizing cone.
We will treat first the case n = 2. In this case, Ω∩ S1 is a finite collection

of disjoint circular arcs. Take one of these arcs, with endpoints x0, x1. If
x0 ̸= −x1, denote by T the closed triangle spanned by x0, x1 and 0, and
consider Ω′ := Ω \ T . Since in a triangle the lenght of a side is strictly smaller
than the sum of the lenghts of the other two sides, we get that P (Ω′;B(0, 2)) <
P (Ω;B(0, 2)), and Ω∆Ω′ ⊂⊂ B(0, 2). Therefore, Ω ∩ S1 consists of just one
circular arc with antipodal end-points, that is Ω is a half-plane.

Consider now the case of n ≥ 3.
We will use the stability inequality to prove that the second fundamental

form of ∂Ω\{0} is identically zero. Since ∂Ω\{0} is smooth, we are allowed to
use, in (1.7), test functions with support away from zero. Fix ϵ > 0, and take as
a test function ζϵ := φ|A|ϵ, where φ ∈ C∞

c (Rn \ {0}), and |A|ϵ :=
√

|A|2 + ϵ2.
We have

|∇∂Ωζϵ|2 = φ2|∇∂Ω|A|ϵ|2 + |A|2ϵ |∇∂Ωφ|2 +
1

2
∇∂Ω(φ

2) · ∇∂Ω(|A|2ϵ )

= φ2|∇∂Ω|A|ϵ|2 + |A|2ϵ |∇∂Ωφ|2 +
1

2
div(φ2|A|2ϵ )−

1

2
φ2∆∂Ω(|A|2ϵ )

= φ2 1

4|A|2ϵ
|∇∂Ω|A|2|2 + |A|2ϵ |∇∂Ωφ|2 +

1

2
div(φ2|A|2ϵ )−

1

2
φ2∆∂Ω(|A|2).

Now, ∇∂Ω(|A|2) and ∆∂Ω(|A|2) vanish Hn−1-almost everywhere on the set
{|A| = 0} ∩ ∂Ω, and, on the set {|A| ≠ 0}, 1

4|A|2ϵ
|∇∂Ω|A|2|2 = |A|2

|A|2ϵ
|∇∂Ω|A||2,

thus,
1

4|A|2ϵ
|∇∂Ω|A|2|2 ≤ 1|A|̸=0|∇∂Ω|A||2. By (1.7) and by the tangential diver-

gence theorem, using that the mean curvature of ∂Ω vanishes,∫
∂Ω

φ2

(
|∇∂Ω|A||21{|A|̸=0} −

1

2
∆∂Ω(|A|2)1{|A|̸=0} − |A|2|A|2ϵ

)

≥ −
∫
∂Ω

|A|2ϵ |∇∂Ωφ|2.

Letting ϵ→ 0, and using (1.9), we can write∫
∂Ω

φ2 2|A|2

|x|2
− |A|2|∇∂Ωφ|2 ≤ 0,
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and, since |A| ≲ 1
|X| , by smoothing and approximation, the previous inequality

holds for any φ Lipschitz such that∫
∂Ω

φ2

|x|4
<∞.

Take now φ := u(|x|); by the Coarea formula,∫
∂Ω

φ2

|x|4 = Hn−2(∂Ω∩Sn−1)
∞∫
0

u2(r)rn−6 dr, where we used that, since ν(x) ·

x = 0, ∇∂Ω|x| = ∇|x|, and thus the coarea factor of |x| on ∂Ω is equal to 1.
Thus, using also that φ is 0-homogeneus and hence ∇∂Ωφ = ∇φ, the stability
inequality reduces to ∫

∂Ω

|A|2
(
|u′(|x|)|2 − 2

u2(|x|)
|x|2

)
≥ 0,

whenever
∞∫
0

u2(r)rn−6 dr <∞. Let us define

u(r) :=

{
rα, 0 < r < 1,

rβ, r > 1,

where, in order to have u Lipschitz, we impose α ≥ 1 and β < 0. The

integrability condition on u is the finiteness of
1∫
0

r2α+n−6 and
∞∫
1

r2β+n−6, that

is
β <

5− n

2
< α.

Under this condition, the stability inequality implies

(α2 − 2)

∫
B∩∂Ω

|A|2|x|2(α−1) + (β2 − 2)

∫
∂Ω\B

|A|2|x|2(β−1) ≥ 0.

Now, since 3 ≤ n ≤ 7, there exist α and β such that

β < 0, α ≥ 1, β <
5− n

2
< α, α2 < 2, β2 < 2,

and thus ∫
B∩∂Ω

|A|2|x|2(α−1) = 0 =

∫
∂Ω\B

|A|2|x|2(β−1),

that implies |A| ≡ 0, i.e. ν is constant on ∂Ω \ {0}, and then Ω is an half-
space.
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Notice that the Simons’ Theorem, together with Theorem 1.3.7, imply that
n∗ ≥ 8.

The critical dimension is indeed 8, as shown by the following Theorem due
to Bombieri, De Giorgi and Giusti [6] .

Theorem 1.3.11. If m ≥ 4, then the Simons cone

Ω := {(x, y) ∈ Rm × Rm : |x| < |y|}

is a smooth minimizing cone.



CHAPTER 2
Regularity of capillary

hypersurfaces

In sections 1, 2, 3 and 5 of this chapter we will follow the work of Edelen,
Chodosh, and Li in [2]. Let σ ∈ (0, 1) be a real number, and let E ⊂ Rn+1

+ be
a set of finite perimeter. We will work with the functional

A(E) := Hn(∂∗E ∩ Rn+1
+ )− σHn(∂∗E ∩ Rn), (2.1)

where Rn+1
+ is the upper half space and Rn := ∂Rn+1

+ . If E is a set of locally
finite perimeter, and U is a bounded open set in Rn+1, we will denote

AU (E) := A(U ∩ E)

Like we did in the previous chapter with the perimeter, we want to study
the behaviour of minimizers of A among the class of sets of locally finite
perimeter.

Definition 2.0.1. Let A be an open set in Rn+1, and let E be a set of locally
finite perimeter in Rn+1

+ . We say that E is a minimizer for A in A if, for any
U ⊂ A bounded open set, and any E′ ⊂ Rn+1

+ of locally finite perimeter such
that E′∆E ⊂⊂ A, then

AU (E) ≤ AU (E
′).

If A = Rn+1, we will say that E is a minimizer of A.

22
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Definition 2.0.2. Let E be an open set in Rn+1
+ , and denote M := ∂E∩Rn+1

+ .
Let A be an open set in Rn+1. We say that E is smooth in A if the clousure
of M in A is a smooth hypersurface. We denote as ∂M ⊂ Rn the boundary of
M , and we call M a capillary surface.

If E is a minimizer of A smooth in A, we will say that E is a smooth
minimizer in A. If A = Rn+1, we say that E is a smooth minimizer.

If E is a cone, and A = Rn+1 \ {0}, we will say that E is a smooth cone.

2.1 First and second variation

Let E be a smooth minimizer of A. In particular, for every admissible local
variation Et of E,

d

dt
A(Et)|t=0

= 0,
d2

dt2
A(Et)|t=0

≥ 0.

Since we work in the upper half space we need variations with velocity vector
field tangential to Rn. Namely, for T ∈ C∞

c (Rn+1;Rn), we take the variation
Φt(x) defined by the ODE{

d
dtΦt(x) = T (Φt(x)),

Φ0(x) = x,

and we say that Φ is a variation with initial velocity vector field T .

Definition 2.1.1. Let E ⊂ Rn+1
+ be smooth.

We say that E is stationary for A, if

d

dt
A(Et)|t=0

= 0,

for any local variation Et of A.
We say that E is stable for A, if

d2

dt2
A(Et)|t=0

≥ 0,

for any local variation Et of A.

Denote M := ∂E ∩ Rn+1
+ , and let ν be the unit normal vector field of M

in E that points out of E, η be the unit normal vector field of ∂M in M that
points out of M , en+1 be the (n + 1)th vector of the canonical basis of Rn+1,
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and ν be the unit normal vector field of ∂M in Rn that points out of ∂E ∩Rn.
Notice that, since en+1 ⊥ ∂M and ν = ν−(ν·en+1)en+1√

1−(ν·en+1)2
, we have

ν ∈ Span(ν, η), en+1 ∈ Span(ν, η). (2.2)

Take T ∈ C∞
c (Rn+1;Rn) and define Et := Φt(E). Using the first variation of

the area, the tangential divergence theorem, and the area formula, it’s easy to
see that, for t small enough,

d

dt
A(Et) =

∫
M

Ht(Φt(x))T (Φt(x)) · νt(Φt(x))JMΦt(x)dHn(x)+

+

∫
∂M

T (Φt(x)) · (ηt(Φt(x))− σνt(Φt(x)))J ∂MΦt(x) dHn−1(x), (2.3)

where Ht is the mean curvature of Mt := Φt(M), νt is the unit normal vector
field of Mt in Et that points out of Et, ηt is the unit normal vector field of
∂Mt in Mt that points out of Mt, νt is the unit normal vector field of ∂Mt in
Rn that points out of ∂Et ∩ Rn, JMΦt(x) is the Jacobian of the isomorphism
dΦt(x) : TxM → TΦt(x)Mt, and J ∂MΦt(x) is the Jacobian of the isomorphism
dΦt(x) : Tx∂M → TΦt(x)∂Mt.
From (2.3) and the stationarity of E we get

H0 = 0, η − (η · en+1)en+1 = σν, (2.4)

from which, taking into account that η ⊥ ν, and that ν ∈ Span(ν, η),

cos(θ) = σ, (2.5)

where cos(θ) := ν · en+1. Now we compute the second variation d2

dt2
A(Et)|t=0

taking the derivative of (2.3). Derivating under the integral sign and using
(2.4), we obtain

d2

dt2
A(Et)|t=0

=

∫
M

d

dt
(Ht◦Φt)|t=0

T ·ν dHn+

∫
∂M

T · d
dt
(ηt◦Φt−σνt◦Φt)|t=0

dHn−1,

(2.6)
therefore we need to compute d

dt(Ht ◦Φt)|t=0
and d

dt(ηt−σνt)|t=0
. We will deal

first with the derivative of the unit normal vector fields νt, ηt, and νt.
We recall that, since Ẽ is an open set with smooth boundary, there exists
a smooth real-valued map s̃ defined on a neighbourhood of ∂Ẽ, such that
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N := ∇s̃ is an extension of ν with |N | ≡ 1. Therefore A := ∇2s̃ is a symmetric
extension of the second fundamental form of ∂Ẽ satisfying AN = 0. Rotating
N of π

2 in the plane defined by N and en+1, we obtain a smooth extension Z
of η to a neighbourhood of ∂M , satisfying |Z| ≡ 1 and Z ⊥ N . Therefore,

(∇Z)tZ = 0, (∇Z)tN = −(∇N)Z. (2.7)

Finally, we give an extension N of ν defined by N = N−(N ·en+1)en+1√
1−(N ·en+1)2

.

By a simple computation we can express νt, ηt and νt in terms of ν, η and ν:

νt ◦ Φt =
(∇Φt)

−tν

|(∇Φt)−tν|
, (2.8)

ηt ◦ Φt =
(∇Φt)

−tη − (νt ◦ Φt · (∇Φt)
−tη)νt ◦ Φt

|(∇Φt)−tη − (νt ◦ Φt · (∇Φt)−tη)νt ◦ Φt|
, (2.9)

νt ◦ Φt =
(∇Φt)

−tν − (en+1 · (∇Φt)
−tν)en+1

|(∇Φt)−tν − (en+1 · (∇Φt)−tν)en+1|
. (2.10)

Using these relations and the fact that ν · η = 0, ν · en+1 = 0, and that
T · en+1 = 0 provides (∇T )ten+1 = 0, we can compute

d

dt
νt ◦ Φt |t=0

= −(∇T )tν + (ν · (∇T )tν)ν, (2.11)

d

dt
ηt◦Φt |t=0

= −(∇T )tη+(ν ·(∇T )tη)ν+(η ·(∇T )tν)ν+(η ·(∇T )tη)η, (2.12)

d

dt
νt ◦ Φt |t=0

= −(∇T )tν + (en+1 · (∇T )tν)en+1 + (ν · (∇T )tν)ν. (2.13)

Taking from now on
T =

φ√
1− (N · en+1)2

N, (2.14)

with φ ∈ C∞
c (∂M), we have T ∈ Span(N,Z), therefore T = (T ·N)N+(T ·Z)Z.

Since on ∂M we have T = (T · ν)ν = (T · η)η + (T · ν)ν, we have

T ·
(
d

dt
νt ◦ Φt |t=0

)
= −(T · ν)ν · (∇T )tν + (ν · (∇T )tν)(T · ν) = 0, (2.15)

and
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T ·
(
d

dt
ηt ◦ Φt |t=0

)
= −T ·(∇T )tη+

(
(T · ν)ν · (∇T )tη)

)
+
(
(T · η)η · (∇T )tη)

)
+

+ (T · ν)(η · (∇T )tν) = (T · ν)(η · (∇T )tν). (2.16)

Using now ∇T = (T ·N)A+(T ·Z)∇Z+N ⊗∇(T ·N)+Z⊗∇(T ·Z), where
by v ⊗ w we mean v · wt, and taking into account that AN = 0, we have

(T ·ν)(η·(∇T )tν) = (T ·N)(Z·(∇T )tN) = (T ·N)(T ·Z)(Z·(∇Z)tN)+(T ·N)∇(T ·N)·Z.

Now we use that (∇Z)tN = −AZ, that T ·N = φ, and that, on ∂M ,

T · η = −φcos(θ) cos(π/2 + θ)

sin2(θ)
= φ cot(θ),

in order to deduce, from (2.15) and (2.16),∫
∂M

T · d
dt
(ηt◦Φt−σνt◦Φt)|t=0

dHn−1 =

∫
∂M

− cot(θ)φ2η ·Aη+φ∇(φ) ·η dHn−1.

(2.17)
We need now to compute the derivative of the mean curvature.
Notice that N provides an extension Nt of νt defined by Nt ◦Φt = (∇Φt)−tN

|(∇Φt)−tN | ,
with |Nt| ≡ 1. Therefore we have (∇Nt)

tNt = 0, which implies
Ht ◦ Φt = tr(∇(Nt) ◦ Φt) = tr((∇Φt)

−t∇(Nt ◦ Φt)). Then,

d

dt
Ht ◦ Φt |t=0

= −tr((∇T )tA) + div
(
−(∇T )tN + (N · (∇T )tN)N

)
=

= −tr((∇T )tA) + div (−∇M (T ·N) +AT ) ,

where −∇M is the gradient tangential to M . Using that the divergence of a
tangential vector field is equal to its tangential divergence divM , we have
div(∇M (T · N)) = divM (∇M (T · N)). Notice that, if x ∈ M , Z(x) ∈ TxM ,
therefore, if f is a smooth function which is zero on M , ∇f · Z = 0 on M .
Taking f = ∆s̃, which is equal to H0 = 0 on M , and taking into account that
A = ∇2s̃ and that AN = 0, we have

div(AT ) = ∂i (∂i∂j s̃ (T · Z)Zj) = (T ·Z)∇(∆s̃)·Z+tr(∇((T ·Z)Z)tA) = tr(∇((T ·Z)Z)tA),

where we used the Einstein summation convention for repeated indices.
Since −tr((∇T )tA) = −tr(∇((T · Z)Z)tA)− (T ·N)|A|2,

d

dt
Ht ◦ Φt |t=0

= −divM∇M (φ)− φ|A2|, (2.18)
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which gives, together with the tangential divergence theorem, and with H0 ≡ 0
on M ,∫
M

d

dt
Ht ◦Φt |t=0

(T · ν) dHn =

∫
M

|∇Mφ|2 − |A|2φ2 dHn−
∫
∂M

φ∇Mφ · η dHn−1.

(2.19)
Now, η is tangential to M at ∂M , then ∇Mφ · η = ∇φ · η. Combining this
relation with (2.19), (2.17), and the minimality of E, we finally obtain the
following theorem.

Theorem 2.1.2 (Stability inequality). Let E ⊂ Rn+1
+ be smooth and station-

ary for A. Then,
HM = 0, cos(θ) = σ, (2.20)

where cos(θ) := en+1 · ν. If, moreover, E is stable for A, it satisfies the
following stability inequality∫
M

|∇Mφ|2−|A|2φ2 dHn−cot(θ)

∫
∂M

φ2η·Aη dHn−1 ≥ 0, for allφ ∈ C∞
c (M).

(2.21)

Notice that we proved (2.21) only for φ ∈ C∞
c (∂M), but using a partition

of unity and the fact that if φ has support away from the boundary we are left
with the well known second variation of the perimeter, we can write (2.21) for
every φ ∈ C∞

c (M).

Remark 2.1.3. We will apply the previous theorem to a minimizing cone
with an isolated singularity at the origin. In this case we are allowed to use
only test functions in C∞

c (M \ {0}).

Notation 2.1.4. Since, for a stationary smnooth set of A we have cos(θ) = σ,
we will call σ = cos(θ), and we will call A = Aθ, underlyining the dependence
on the angle θ.

Remark 2.1.5. Since any smooth minimizer Ω of Aθ, gives, by complemen-
tation, a smooth minimizer Rn+1

+ \Ω of Aπ−θ, we will always assume, without
loss of generality, that θ ∈ (0, π2 ).

Now we prove that, in the special case of a minimizing cone Ω with an
isolated singularity at the origin, we can lower the degrees of freedom of the
problem in (2.21).
For such an Ω we have that Σ := M ∩ Sn is smooth, M = {λΣ |λ > 0}, and
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all the normal vector fields ν, ν, η are 0-homogeneus. Moreover, if x ∈ Σ, ν(x)
is the unit normal vector field of Σ in Sn that points out of Ω ∩ Sn, η(x) is
the unit normal vector field of ∂Σ is Σ that points out of Σ, and ν is the unit
normal vector field of ∂Σ in ∂Ω ∩ Sn ∩ Rn that points out of ∂Ω ∩ Sn ∩ Rn.

Theorem 2.1.6. Suppose Ω ⊂ Rn+1
+ is a cone, stationary and stable for A,

with an isolated singularity at the origin. Then we have that∫
Σ

(|∇Σf |2−|A|2f2) dHn−1−cot θ

∫
∂Σ

η·Aηf2 dHn−2 ≥ −
(
n− 2

2

)2 ∫
Σ

f2 dHn−1,

(2.22)
for all f ∈ C1(Sn)

Proof. We use as a test function in (2.21) φ(ωr) = g(r)f(ω), where ω ∈ Sn,
r > 0, f ∈ C1(Sn) and g ∈ C∞

c (0,∞). Using the coarea formula and that,
since ν and f are 0-homogeneus, A and ∇f are (−1)−homogeneus, we get

∞∫
0

rn−1

∫
Σ

g′(r)2f2(ω) + g2(r)r−2|∇Σfω|2 − |Aω|2r−2g2(r)f2(ω)Hn−1(ω) dr−

− cot θ

∞∫
0

rn−3g2(r)

∫
∂Σ

η(ω) ·Aωη(ω)f2(ω) dHn−2(ω) dr ≥ 0,

and by the Hardy inequality (see Lemma 2.1.7) follows that

(n− 2)2

4
= inf

{∫∞
0 g′(r)2 rn−1dr∫∞
0 g(r)2rn−3 dr

: g ∈ C∞
c ((0,+∞))

}
.

Lemma 2.1.7. We have that

(n− 2)2

4
= inf

{∫∞
0 g′(r)2 rn−1dr∫∞
0 g(r)2rn−3 dr

: g ∈ C∞
c ((0,+∞))

}
.

Proof. Let g ∈ C∞
c ((0,+∞)). Since g′(r)r

n−1
2 = (g(r)r

n−1
2 )′ − n−1

2 g(r)r
n−3
2 ,

we have that∫ +∞

0
g′(r)2rn−1dr =

∫ +∞

0
|(g(r)r

n−1
2 )′|2 dr
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− 2

∫ +∞

0
(g(r)r

n−1
2 )′

n− 1

2
g(r)r

n−3
2 dr

+

∫ +∞

0
(
n− 1

2
g(r)r

n−3
2 )2(r) dr.

Now we notice that for every φ ∈ C∞
c ((0,+∞)) we have∫ +∞

0
(φ(r)r)′φ(r) dr = −

∫ +∞

0
φ′(r)rφ(r) dr

= −
∫ +∞

0

(
(φr)′ − φ

)
φdr

= −
∫ +∞

0
(φr)′φdr +

∫ +∞

0
φ2 dr,

which gives that

2

∫ +∞

0
(rφ)′φdr =

∫ +∞

0
φ2 dr,

and so

2

∫ +∞

0
(g(r)r

n−1
2 )′g(r)r

n−3
2 dr =

∫ +∞

0

(
g(r)r

n−3
2

)2
dr

∫ +∞

0
g′(r)2rn−1dr =

∫ +∞

0

∣∣∣(g(r)r n−1
2

)′∣∣∣2 dr + (
− n− 1

2
+
(n− 1

2

)2)∫ +∞

0
g(r)2rn−3 dr

=

∫ +∞

0

∣∣∣(g(r)r n−1
2

)′∣∣∣2 dr + (n− 1)(n− 3)

4

∫ +∞

0
g(r)2rn−3 dr.

Setting φ(r) = r
n−1
2 g(r), we get that∫∞

0 g′(r)2 rn−1dr∫∞
0 g(r)2rn−3 dr

=

∫∞
0

(
φ′(r)

)2
dr∫∞

0
1
r2
φ2(r) dr

+
(d− 1)(d− 3)

4
.

Finally, by the Hardy inequality (see [4]), we have that

1

4
= inf

{∫∞
0

(
φ′(r)

)2
dr∫∞

0
1
r2
φ2(r) dr

: φ ∈ C∞
c ((0,+∞))

}
.
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2.2 The main Theorem

Like we did for perimeter minimizers, we want to study the regularity of min-
imizers for Aθ.

Also in this context, we have regularity away from a singular set, as stated
in the following theorem (see [7]).

Theorem 2.2.1. Let θ ∈ (0, π2 ). Let n ≤ 6, E ⊂ Rn+1
+ be a minimizer of

Aθ, and let M := ∂E ∩ Rn+1
+ . Then, M is a smooth hypersurface away from

a closed set Σ(M) ⊂ M ∩ Rn, that we call the singular set of M . Moreover,
Hn−1(Σ(M)) = 0.

Moreover, it can be proven that the Federer’s dimension reduction argu-
ment applies also here, so that we have the following Theorem.

Theorem 2.2.2. Let θ ∈ (0, π2 ). There is a critical dimension n∗(θ) (defined
as the first dimension n such that there is a smooth minimizing cone for Aθ

in Rn+1), such that

• if n < n∗, then the singular set Σ(M) is empty for any minimizer of Aθ

in Rn+1;

• if n = n∗, then for any minimizer of Aθ in Rn+1, the singular set Σ(M)
is a discrete set of points;

• if n > n∗, then for any minimizer of Aθ in Rn+1, the Hausdorff dimen-
sion of Σ(M) is at most n− n∗, that is:

Hn−n∗+ε(Σ(M)) = 0 for every ε > 0.

Therefore, we study smooth cones also in this context, proving the following
Theorem.

Theorem 2.2.3. There are angles θ0 and θ1 such that the following holds.

• n∗(θ) ≥ 4, for any θ ∈ (0, π2 ).

• If 0 < θ < θ0, then n∗(θ) ≥ 5.

• If θ1 < θ < π
2 , then n∗(θ) ≥ 7.
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2.3 The case n = 3

We are going to prove that there are no minimizing cones (for (2.1)) with an
isolated singularity in R4

+. In this case Σ is a surface embedded in S3. We
will use (2.22) combined with the Gauss-Bonnet Theorem to find out that
χ(CΣ) > 0, for every connected component of Σ, where χ is the Euler char-
acteristic. By the classification of compact oriented connected surfaces with
boundary will folllow that Σ is homeomorphic to a disk. By the uniformization
theorem (see [8]), then, will follow that Σ is conformally equivalent to a disk,
and we will use a conformal parametrization of Σ to show that |A|2 ≡ 0 on Σ,
and by homogeneity |A|2 ≡ 0 on M . This, together with the boundary contact
angle condition, implies that Ω is the intersection of an half-space with Rn+1

+ ,
therefore it is smooth also in the origin.
We need some Lemmas and definitions before the proof.
Notice that the second fundamental formA of a cone satisfiesAx x = Ax ν(x) =
0, then A can be viewed as a symmetric tensor field on TΣ. The second fun-
damental form of Σ, as a submanifold of S3, is defined through

σ(v, w) = ∇vν · w, (2.23)

where ∇ is the Levi-Civita connection on S3 induced by the euclidean metric,
and v, w ∈ TΣ. Since, in order to use the Gauss-Bonnet theorem, we will
need σ to compute the geodesic curvature of ∂Σ, we now exploit the relation
between A and σ.

Lemma 2.3.1. For every v, w ∈ TxΣ, and for every Y, Ỹ vector fields on Σ,

v ·Axw = σx(v, w), Y (p) ·Ap Ỹ (p) = −∇Y Ỹ (p) · ν(p) (2.24)

Proof. For a fixed x ∈ TxΣ, we can choose a coordinate system for Σ such that
the metric is 0 at the first order in x. Therefore, ∇vν(x) = ∂vν(x) = Ax v,
that gives the first equality in (2.24), which is independent on the coordinate
system.
Differentiating Ỹ · ν = 0 we obtain

∇Y ν · Ỹ = −∇Y Ỹ · ν,

that ends the proof.

For a more detailed version of the following Lemma we refer to [9].

Lemma 2.3.2. Let Σ as above. Then, at ∂Σ,

cot θη ·Aη = −kg, (2.25)

where kg is the geodesic curvature of ∂Σ.
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Proof. By definition, kg = −∇ττ ·η. SinceM has zero mean curvature, η·Aη =
−τA · τ , where τ is the unit tangent vector field of ∂Σ. Therefore, by the
previous Lemma,

cos θ η ·Aη + sin θ kg = −∇ττ · (− cos θ ν + sin θ η).

Now, − cos θ ν + sin θ η = −en+1, and since τ is orthogonal to en+1, so is
∇ττ .

Definition 2.3.3. Let N be a Riemannian manifold with dimension 2. We
define the Gaussian curvature K of N by

K =
RN
2
, (2.26)

where RN is the Ricci curvature of N .

Remark 2.3.4. If (M, g) is a Riemannian manifold and xµ are coordinates
on M , the Christoffel symbol with respect to the Levi-Civita connection are
given by

Γλµ,ν =
1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν), (2.27)

where we used the Einstein convention for repeated indexes, and where gλσ are
the coordinates of g−1. We recall that the Ricci curvature at a point p ∈M is
given by

RM := ∂µΓ
µ
νν − ∂νΓ

µ
µν + ΓµµλΓ

λ
νν − ΓµνλΓ

λ
µν , (2.28)

whenever gµν(p) = δµν , and we will compute the Ricci curvature at a point
only in those particular coordinate systems.

Lemma 2.3.5. Let M as above. Then,

RM = −|A|2. (2.29)

Proof. Notice that (2.29) doesn’t depend on the coordinate system. Therefore
we can fix p ∈ M , and, up to translation and rotations, we can assume that
p = 0, and that, locally in 0, M is the graph of a function u(x) : Rn → R, such
that u(0) = 0, ∇u(0) = 0, and D2u(0) is diagonal. In this coordinate system

g = Id+∇u⊗∇u.

Therefore, using that, for every matrix A with ∥A∥ < 1, the Neumann series
gives

(Id+A)−1 =
∞∑
k=0

(−1)kAk,
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the Taylor expansion of ∇u in 0 gives

gµν(x) = δµν +O(|x|2).

Moreover, the external normal to M in Ω is

ν ◦ u(x) = (∇u,−1)|1 + |∇u|2|−1/2,

which implies
A(0) = D2u(0), (2.30)

and, since the mean curvature of M is zero,

∆u(0) = 0. (2.31)

Computing the Christoffel symbols,

Γλµν =
1

2
gλσ(∂µ(uνuσ) + ∂ν(uσuµ)− ∂σ(uµuν)) =

= gλσuσuµν =

= uλuµν +O(|x|2),

in particular Γλµν(0) = 0. Therefore the Ricci curvature in 0 is

RM (0) = ∂µΓ
µ
νν(0)− ∂νΓ

µ
µν(0) =

= ∂µ(uµuνν)(0)− ∂ν(uµuνµ)(0) =

= (∆u(0))2 − |D2u(0)|2 =
= −|A|2(0).

Lemma 2.3.6. Let Σ and M as above(For this Lemma we don’t require sta-
tionarity or stability for M). Then,

KΣ =
RM
2

+ 1 (2.32)

Proof. Let us denote as Γ̃λµν the Christoffel symbols of Σ, and as g̃ the metric
on Σ. Take a point p ∈ Σ and let φ̃ : U ⊂ R2 → Σ be a local parametrization
of Σ in p = φ̃(0) such that, in the coordinates induced by φ̃, g̃(0)µν = δµν ,
and Γ̃λµν(0) = 0. Notice that the function φ : U × R+ → M defined by
φ(x, r) = rφ̃(x) is a local parametrization of M around p that agrees on
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U × {1} with φ̃. Let us work in the coordinates induced by φ on M . Notice
that 

gµν(x, r) = rg̃µν(x) ifµ, ν ≤ 2,

gµ3(x, r) = rφ̃µ(x) · φ̃ = 0 ifµ ≤ 2,

g33(x, r) = |φ̃|2(x) = 1,

where we used that Σ ⊂ S3 and that φ̃ · φ̃ = 1 implies φ̃µ · φ̃ = 0. Therefore
the Christoffel symbols satisy

Γλµν(x, r) = Γ̃λµν(x) ifµ, ν, λ ≤ 2

Γ3
µν(x, r) = −rg̃µν(x) = −r + o(|x|) ifµ, ν ≤ 2

Γ3
µ3 = Γ3

3µ = 0

Γλ3ν(x, r) = r−1δλν ifλ, ν ≤ 2

Γλ33 = 0 ifλ ≤ 2.

In particular, the Christoffel symbols of Σ are the same in the coordinates
induced by φ and the ones induced by φ̃, and every time that two indexes
between λ, µ, ν are equal to 3 we have Γλµν = 0. Therefore, using also Γ̃λµν(0) =
0 and g̃µν(0) = δµν ,

RM (0, 1) = RΣ(0) + (∂3Γ
3
νν − ∂3Γ

µ
µ3 + Γµµ3Γ

3
νν − ΓµνλΓ

λ
µν)(0, 1) =

= RΣ(0)− g̃νν(0) + 2− 2g̃νν(0)− (−2g̃νλ(0)δ
λ
ν + 2) =

= RΣ(0)− 2 + 2− 4− (−4 + 2) =

= RΣ(0)− 2.

Then
KΣ(0) =

RΣ(0)

2
=
RM (0, 1)

2
+ 1,

and the fact that φ(0, 1) = φ̃(0) = p ends the proof.

Definition 2.3.7. A diffeomorphism u : (N, g) → (Ñ , g̃) between Riemannian
manifolds is conformal if there exists a smooth function λ ≥ 0 on N such that

g̃

(
∂u

∂xi
,
∂u

∂xj

)
= λ(x)g

(
∂

∂xi
,
∂

∂xj

)
,

for every local parametrization x of N .
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Lemma 2.3.8. Let Σ and Ω as above, D be the closed unit disk in the complex
plane. If u : D ≃ Σ is a conformal diffeomorphism, the following relations hold

νi · uj = Aij = −ν · uij (2.33)
∆u · ν ≡ 0 (2.34)

u1k · u2 = −u2k · u1 (2.35)
uij · ui = ukj · uk (2.36)
ν1 · u22 = ν2 · u12 (2.37)
ν2 · u11 = ν1 · u12 (2.38)

where Ai,j

λ =
uiAuj
λ are the coordinates of the second fundamental form under

the parametrization u, and νi is the ith−partial derivative of ν ◦ u. Here
λ = |ui|2 = |uj |2.

Proof. ui is tangent to Σ, therefore, taking the derivative of ui · (ν ◦ u) = 0,
we obtain (2.33). Since M has zero mean curvature, and since u1, u2 gives
an orthogonal basis of TΣ, we have also (2.34). (2.35) follows by taking the
kth−derivative of the relation u1 · u2 = 0,and aking the jth−derivative of
ui · ui = uk · uk gives (2.36). From ν · u = 0 and ν · ν = 1 we have

νi · u = −ν · ui = 0,

νi · ν = 0,

which means νi ∈ TΣ. Therefore, using the previous equations,

λν1 · u22 = (ν1 · u1)u1 · u22 + (ν1 · u2)u2 · u22 =
= (−ν2 · u2)(−u2 · u12) + (ν2 · u1)(u1 · u12) =
= λν2 · u12.

(2.38) holds with the same proof.

Lemma 2.3.9. Let Ω and Σ as above. Then, for every x ∈ ∂Σ,

Ax η(x) ⊥ ∂Σ. (2.39)

Proof. Let x ∈ ∂Σ and τ(x) ∈ Tx∂Σ. Since n = 3, (x, ν(x), η(x), τ(x)) is
an orthogonal basis of R4. Since ∇Nx x = ∇Nx ν(x) = 0, the image of ∇Nx

lays in Span(η(x), τ(x)). Let γ be a curve in ∂Σ such that γ(0) = x and
γ′(0) = τ(x). From (ν ◦ γ) · en+1 = cos θ we have

en+1 · ∇N τ = 0.
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Now, ∇N τ = µ1η + µ2τ , and, since at the boundary η · en+1 = sin θ ̸= 0, and
τ · en+1 = 0, we have µ1 = 0, so that

η · ∇N τ = 0.

Theorem 2.3.10. Let M and Σ as above. Then |A|2 ≡ 0

Proof. Up to replace Σ with one of its connected components we can assume
Σ connected.
Apply (2.22) with f ≡ 1, and using that, by previous lemmas, − |A|2

2 = KΣ−1,
we get ∫

Σ

KΣ dH2 +

∫
∂Σ

kg dH1 ≥ H2(Σ)

(
−1

4
+ 1

)
+

∫
Σ

|A|2

2
dH2.

By Gauss-Bonnet theorem and H2(Σ) > 0 we have that χ(Σ) > 0, and as
previously discussed, we can find a conformal diffeomorphism u between the
complex unit disc D and Σ.
Take complex coordinates z = x + iy and polar coordinates z = reiα on D.
since u is conformal, ∂u

∂r ⊥ ∂u
∂α . Since at the boundary ∂u

∂α ∈ T∂Σ, ∂u
∂r must be

proportional to η, and, by Lemma 2.3.9, at the boundary holds

Ar,α :=
∂u

∂r
·A∂u

∂α
= 0 on ∂D.

On the other hand, on the whole disk we have

rAr,α = xy(A22 −A11) +A12(x
2 − y2) = ℑ

(
z2

2
(A22 −A11 + 2iA12)

)
.

Define then
2h(z) := A22 −A11 + 2iA12 = 2A22 + 2iA12.

If we prove that h is holomorphic, so is z2h. But z2h has immaginary part
zero at ∂D, therefore the harmonic function ℑ(z2h(z)) is identically zero by
the maximum principle. From this, we have that z2h(z) is an holomorphic
functions with real values that is zero in zero, so it is identically zero. Therefore
so is h, which means |A|2 = 0. We set

h1 := ℜh and h2 := ℑh.
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Let us prove that h is holomorphic. Using (2.37) and (2.38), we get
h11 = ν1 · u22 + ν · u122
h22 = ν2 · u12 + ν · u122 = h11
h21 = ν1 · u12 + ν · u112
h12 = −ν2 · u11 − ν · u211 = −h21,

which means that h satisfies the Cauchy-Riemann equations.

2.4 The case n = 4 for contact angles close to 0

In this section we exploit the connection between the cones minimizing Aθ

and the one-homogeneus minimizer of the Alt-Caffarelli functional. In order
to understand how this connection arises, consider the case where a cone Ωθ

minimum of Aθ is the region below the graph of a one-homogeneous lipschitz
function uθ over the xn+1 direction. Namely, calling M θ = ∂Ω∩Rn+1

+ , it holds
M θ = {(x′, uθ(x′)) : x′ ∈ Rn, uθ(x′) > 0}.

Setting vθ = uθ

tan(θ) , and assuming that the Lipschitz constant of vθ, and
thus |∇vθ|, is uniformly bounded as θ goes to 0, we can write

Aθ(Ωθ) =

∫
uθ>0

√
1 + |∇uθ|2 − cos(θ)1uθ>0

=

∫
vθ>0

(
(1− cos(θ))

)
1vθ>0 +

1

2
tan2(θ)|∇vθ|2 +O(tan4(θ)) =

=
1

2
tan2(θ)

∫
vθ>0

(
|∇vθ|2 + 1vθ>0 +O(θ2)

)
,

where we used that
√
1 + x = 1 + 1

2x + O(x2) as x goes to zero. Thus, we
can expect that, as θ goes to zero, vθ = uθ

tan(θ) converges in some sense to an
one-homogeneous minimizer of the one-phase Alt-Caffarelli functional

J(v) =

∫
Rn

|∇v|2 + 1v>0. (2.40)

The definition of a minimizer is the following.

Definition 2.4.1. We say that u ∈ H1
loc(Rn) minimizes J if, for any U ⊂⊂ Rn,

and any w ∈ H1(U) such that u− w ∈ H1
0 (U), we have

J(u) ≤ J(w)
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Using these idea, we will make use of the following teo known facts about
minimizers of J . (see [10] and [3])

Theorem 2.4.2. Let u ∈ H1
loc(Rn) be a minimizer of J in Rn. Then there

exists a constant c0(n) > 1 such that

1

c0
d(x, ∂{u > 0}) ≤ u(x) ≤ d(x, ∂{u > 0}), u(x) > 0

Theorem 2.4.3. If n ≤ 4 and u ∈ H1
loc(Rn) is a minimizer of J , then there

exists a unit vector n such that

u = (x · n)+.

Having this in mind, we want to prove that, for θ small, a minimizing cone
of Aθ with an isolated singularity at 0 is graphical.

We start our treatment by proving that a smooth minimum Ω of Aθ has a
minimizing boundary away from ∂M .

Definition 2.4.4. Let A ⊂ Rn+1 be an open set. We say that a set M is
a mass-minimizing boundary in A if there exists a set E with locally finite
perimeter such that ∂⋆E ∩A =M ∩A, and E is a perimeter minimizer in A.

Definition 2.4.5. Let γ > 0, and let x′ ∈ Rn. We call the cylinder of center
x′ and radius γ the set Uγ(x′) := Bn(0, γ)× R.

More generally, if Γ is a set in Rn, π : Rn+1 → Rn is the orthogonal
projection, we call the γ-cylinder generated by Γ the set Uγ(Γ) := {x ∈ Rn+1 :
d(π(x),Γ)} < γ

Lemma 2.4.6. Let Ω be an open set, minimum of Aθ in B(0; r) that is smooth
in B(0, r). Let x ∈ M ∩ B(0, r) ∩ Rn+1

+ such that d(π(x), ∂M) > γ. Let C be
B(x, γ) or Uγ(π(x)).

Then M is a mass minimizing boundary in C ∩B(0, r).

Proof. By hypothesis, C ∩B(0, r) ∩M ∩ Rn = ∅, thus we can choose ϵ > 0
such that, for any x ∈ C ∩B(0, r) ∩M holds xn+1 ≥ ϵ. Notice that either Ω
or Rn+1

+ \Ω has empty intersection with C ∩B(0, r)∩{xn+1 < ϵ}, and we call
this set E. Indeed, if we had x ∈ Ω and y ∈ Rn+1

+ \Ω with x, y ∈ C ∩B(0, r),
and xn+1, yn+1 < ϵ, then there should be a point z in the segment between x
and y satisfying z ∈ ∂Ω, but, by convexity of C ∩ B(0, r) ∩ {x′ : x′n+1 < ϵ},
z ∈ C∩B(0, r)∩M and zn+1 < ϵ, that, by how we chose ϵ, gives a contradiction.
Therefore, E is a minimizer for Aδ in B(0, r), where δ is either θ or π−θ, and,
for any F with locally finite perimeter such that E∆F ⊂ U ⊂⊂ C ∩ B(0, r),
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we can choose ϵ′ < ϵ such that the set Fϵ′ , defined by cutting F with the upper
half-space {xn+1 > ϵ′} inside C ∩ B(0, r), is a set of locally finite perimeter
satisfying P (Fϵ′ ;U) ≤ P (F ;U). Moreover, by our choise of ϵ, we still have
Fϵ′∆E ⊂ U , and thus,

P (E;U) = Hn(M ∩ U) = Aδ
U (E) ≤ Aδ

U (Fϵ′) = P (Fϵ′ ;U) ≤ P (F ;U).

Remark 2.4.7. Notice that the previous Lemma is true also for Ω smooth
cone with an isolated singularity at zero. And notice that the Lemma is true
for any ball B(x, r) such that

x ∈M B(x, r) ⊂⊂ Rn+1
+ ,

without any constraint on d(π(x), ∂M).

We state now a consequence of the Allard regularity Theorem (see [2]).

Proposition 2.4.8. There is an ϵ0(n) such that the following holds. Let M
be a mass minimizing boundary in B(0, r), r > 0, such that

0 ∈M, sup
M∩B(0,r)

r−1|xn+1| < ϵ ≤ ϵ0.

Then there esxists c(n) > 0 such that M ∩ B(0, r/2) is the graph over the
xn+1-direction of a function u, with the estimate

r|∇2u|+ |∇u|+ r−1|u| ≤ c(n)ϵ, onB(0, r/2). (2.41)

We need also an Harnack inequality for harmonic functions on mass-minimizing
boundary, due to Bombieri and Giusti [11].

Theorem 2.4.9. Let M be a mass-minimizing boundary in B(0, r) ⊂ Rn.
Then, there are constants σ(n) ∈ (0, 1), c(n) such that if u ∈ C1(B(0, r))
satisfies ∫

M

∇u · ∇φdHn = 0, ∀φ ∈ C1
c (B(0, r)), u > 0 onM,

then
sup

M∩B(0,σr)
u ≤ c inf

M∩B(0,σr)
u. (2.42)



CHAPTER 2. REGULARITY OF CAPILLARY HYPERSURFACES 40

Remark 2.4.10. Notice that in our context there is a natural choice of an
harmonic function on a mass minimizing boundaty: indeed, by Lemma 2.4.6,
if Ω is a minimizer of Aθ, then M is a mass minimizing boundary away from
∂M . Moreover, the height xn+1 is a strongly harmonic function in M . Indeed,

∇Mxn+1 = en+1 − (en+1 · ν)ν,
∆Mxn+1 = div(∇mxn+1) = −div(ν)(en+1 · ν)− en+1 ·Aν = 0,

where we used that Aν = 0, and that divν is the mean curvature of M , that
is zero by minimality.

The next Lemma rules out a graphical minimizer of Aθ having large pieces
that stay too close to the boundary, and it is similar to [10][Lemma 3.4].

Lemma 2.4.11. Let Ω be a minimizer for Aθ in B(0, 1), and assume that
there exists u : Bn(0, 1) → [0,∞) Lipschitz such that M ∩ B(0, 1) = ∂Ω ∩
Rn+1
+ ∩ B(0, 1) = graph(u)⌞{u > 0}, and such that Ω ∩ B(0, 1) is the region

below M .
Then, there exists a constant ϵ(n) > 0, such that if sup

B(0,1/2)
u ≤ ϵθ, we must

have u ≡ 0 on B(0, 1/4).

Proof. We want to use a positive Lipschitz function that is zero on B(0, 1/4).
Let us define the harmonic radial function

ϕ(|x|) := |x|2−n − (1/4)2−n,

and notice that ϕ(1/4) = 0, and ϕ(r) < 0 for r > 1/4. Define then

v(x) = cϵθmax{−ϕ(|x|), 0}.

where c(n) is chosen so that v > u on ∂B(0, 1/2). Thus, v ≡ 0 on B(0, 1/4)
and u > 0 on B(0, 1) \ B(0, 1/4). Since min(u, v) = u on ∂B(0, 1/2), and
therefore, we can define the function

ṽ(x) =

{
min(u, v)(x), x ∈ B(0, 1/2),

u(x), x ∈ B(0, 1) \B(0, 1/2).

Hence, if we take Ω̃ to be the region below the graph of ṽ in Rn+1
+ , it holds

Ω∆Ω̃ ⊂⊂ B(0, 1), and therefore Aθ
B(0,1)(Ω) ≤ Aθ

B(0,1)(Ω̃), that is, since v ≡ 0

on B(0, 1/4)
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∫
B(0,1/2)∩{u>0}

√
1 + |∇u|2 − cos(θ) dx ≤

∫
{u>0}∩B(0,1/2)\B(0,1/4)

√
1 + |∇min(u, v)|2 − cos(θ).

Using the inequality
√
1 + a2−

√
1 + b2 ≤ a2−b2 we can write, calling B(0, r) =

Br∫
B1/4

√
1 + |∇u|2 − cos(θ)1{u>0} ≤

∫
B1/2\B1/4

√
1 + |∇min(u, v)|2 −

√
1 + |∇u|2

=

∫
{u>v}∩B1/2\B1/4

√
1 + |∇v|2 −

√
1 + |∇u|2

≤
∫

{u>v}∩B1/2\B1/4

|∇v|2 − |∇u|2

≤ −2

∫
{u>v}∩B1/2\B1/4

∇(u− v) · ∇(v)

where we used that |∇v|2 − |∇u|2 +2∇(u− v) · ∇v = −|∇(u− v)|2 ≤ 0. Now,
since v is harmonic in B1/2 \ B1/4, and u − v ≡ 0 on ∂B1/2, and v ≡ 0 on
∂B1/4,

−2

∫
{u>v}∩B1/2\B1/4

∇(u− v) · ∇(v) = 2

∫
B1/2\B1/4

∇max(u− v, 0) · ∇v

2

∫
∂B1/4

u∂rv

= 2c(n)ϵθ

∫
∂B1/4

u,

and thus ∫
B1/4

√
1 + |∇u|2 − cos(θ)1{u>0} ≤ 2c(n)ϵθ

∫
∂B1/4

u. (2.43)
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The aim is to prove that
∫

∂B1/4

u = 0. This would be enough, indeed, we can

apply the result to Br with r < 1, gaining that also
∫

∂Br/4

u = 0, and thus

u ≡ 0 on B1/4.
A simple computation shows that, for t ≥ 0 and θ ∈ [0, π/2],
2
√
1 + t2 − tθ − 1 ≥

√
4− θ2 − 1 ≥ 1 − θ2/3 ≥ 1 − θ2/2 + θ4/4 ≥ cos(θ),

then, using the trace inequality, the bound |u| ≤ ϵθ and the above inequality
with t = |∇u|, we can write∫

∂B1/4

u ≤ c0(n)

∫
B1/4

|∇u|+ |u|

≤ c1(n)θ
−1

∫
B1/4

|∇u|θ + θ21{u>0}

≤ c2(n)θ
−1

∫
B1/4

|∇u|θ + (1− cos(θ))1{u>0}

≤ 2c2(n)θ
−1

∫
B1/4

√
1 + |∇u|2 − cos(θ)1{u>0},

that, together with the (2.43), implies
∫

∂B1/4

u = 0 for ϵ small enough depending

only on the dimension n.

With the next Lemma we show how an appropriate height bound close to
the boundary of M gives a criterion to write M as a Lipschitz graph even far
away from the boundary, extending the height bound with different constants.

Lemma 2.4.12. There exists θ0(n, γ) > 0 such that the following holds.
Let θ ≤ θ0, and Ω ⊂ Rn+1

+ be an open set with smooth boundary in B(0, 1)∩
Rn+1
+ , that is a minimizer of Aθ in B1. Let M := ∂Ω ∩ Rn+1

+ . Assume that
there exist 0 < γ ≤ 1 and c0 > 0 such that

d(0, ∂M) ≤ γ

2
; (2.44)

if x ∈M ∩B1 with d(π(x), ∂M ∩B1) < γ we have

1

2c0
tan(θ)d(π(x), ∂M) ≤ xn+1 ≤ 2 tan(θ)d(π(x), ∂M). (2.45)

Then there exists a Lipschitz function u : Bn
1/2 → R and a constant c(n, γ)

such that
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1. M̃ := {(z, u(z)) : z ∈ Bn
1/2, u(z) > 0} ⊂M .

2. M ∩B3/4 ∩Bn
1/2 ∩ U γ

2
(∂M ∩B1) ⊂ M̃ .

3. If C is a connected component of (M ∪ ∂M) ∩ B3/4 ∩ π−1(Bn
1/2), then

C ⊂ M̃ .

4. Let Ω̃ ⊂ Rn+1
+ be the region below the graph of u. Then Ω̃ ⊂ Ω. Moreover,

M̃ has positive distance, depending only on γ and n, from any other piece
of M in B3/4 ∩ π−1(Bn

1/2)

5. d(0, ∂{u > 0}) ≤ γ
2 and |u|+ Lip(u) ≤ c(n, γ) tan(θ),

6. For any z ∈ Bn
1/2 with u(z) > 0, there exists a constant c(n, γ) such that

1

c(n, γ)
tan(θ)d(z, ∂{u > 0}) ≤ u(z) ≤ c(n, γ) tan(θ)d(z, ∂{u > 0}),

(2.46)
where ∂{u > 0} is the boundary of the set {u > 0} in Bn

1/2.

Proof. Notice that, since M has zero mean curvature, and it is smoothly em-
bedded at the boundary of Rn+1

+ with fixed contact angle θ ∈ (0, π2 ), there
exists δ << 1 depending on M , such that Uδ(∂M) ∩M is graphical over Rn,
and Ω is the region below its boundary. Here we extend this property.

Take any x ∈M∩B3/4∩π−1(Bn
1/2)∩U γ

2
(∂M∩B1), take r := d(π(x),∂M∩B1)

4 ,
and notice that, since d(π(x), ∂M ∩B1) ≤ |π(x)|+d(0, ∂M ∩B1) ≤ 1

2 +
γ
2 < 1,

B(x, r) ⊂ B(0, 1)∩Uγ(∂M ∩B1). Then, thanks to Lemma 2.4.6, M is a mass
minimizing boundary in B(x, r), and (2.45) gives

yn+1 ≤ 8 tan(θ)r, y ∈ B(x, r).

Thus, thanks to Proposition 2.4.8, provided that θ is small enough, depending
on n and γ, there exists a C1 function ux : Bn(π(x), r2), such that

M ∩B
(
x,
r

2

)
= graph(ux), |∇ux| ≤ 8 tan(θ).

Notice that, any other possible x′ ∈ B3/4 ∩M ∩ π−1(Bn
1/2) such that π(x′) =

π(x) must satisfy x′n+1 ≤ 8 tan(θ)r, thus |x′ − x| ≤ 8 tan(θ)r < r
2 for θ small,

and B(x, r/2) ∩M is a graph, hence x′ = x. This proves that the functions
ux paste well together, and we can define a Lipschitz function u such that

M ∩B3/4 ∩ π−1(Bn
1/2) ∩ U γ

2
(∂M ∩B1) = graph(u), |∇u| ≤ 8 tan(θ).
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Let now σ < 1
4 and C like in Theorem 2.4.9, and take any

x ∈ graph(u) ∩B3/4 ∩ π−1(Bn
1/2) ∩ ∂U γ

4
(∂M ∩B1).

M is a mass minimizing boundary in B(x, σγ), and we can thus apply the
Harnack inequality, obtaining, thanks to (2.45) considered at d(π(·), ∂M ∩
B1) =

γ
4 ,

1

2C0C
tan(θ)

γ

4
≤ yn+1 ≤ 2C tan(θ)

γ

4
, y ∈ B(x, σ2γ) ∩M.

Applying again Proposition 2.4.8, provided that θ is small enough, we can
extend graph(u) in M until B3/4 ∩ π−1(Bn

1/2) ∩ ∂U γ
4
+σ2γ(∂M ∩ B1), with u

satisfying

|∇u| ≤ tan(θ)
C

2σ2
.

Moreover, by the same argument as above, there are no points of M below
the graph of u. We continue this process other N times, where N is the first
integer such that γ

4 + σ2γ + Nσ2 γ2 >
3
4 , extending u to a Lipschitz function

satisfying

|∇u| ≤ c(n, γ) tan(θ), c(n, γ) =
CN+1

2σ2
,

1

2c0c(n, γ)
tan(θ)d(z, ∂M) ≤ d(z, ∂M) ≤ c(n, γ) tan(θ)d(z, ∂M).

Notice that, since the number of steps N is depending on γ, n only, and at
each step we chose θ small enough depending on Ci

2σ2 , where i ≤ N +1, we can
choose a θ0(n, γ) such that for any θ < θ0 the argument above works.

Note that, by construction, there are no points of M below the graph of u,
and, since close to the boundary ∂M Ω must be the region below the graph of
u, if Ω̃ is the open set in the statement, then Ω̃ ⊂ Ω.

Moreover, by construction, any other point of M ∩ B3/4 ∩ π−1(Bn
1/2) that

doesn’t lay on the graph of u, that we call M̃ , must satisfy

d(x, M̃) >
σ2γ

2
.

All of this imply that any connected component of M ∩B3/4 ∩π−1(Bn
1/2) that

touches ∂M ∩ B3/4 ∩ π−1(Bn
1/2) must be contained in M̃ . Notice that u is

not defined in all points of Bn
1/2. The points z in which u is not defined are

points z such that, if x ∈ M ∩ B3/4 ∩ π−1(z), then the connected component
of M ∩B3/4∩π−1(z) doesn’t touch ∂M ∩B1/2, so we can set u(z) = 0. Notice
also that ∂{u > 0} = ∂M ∩Bn

1/2, thus (2.46) follows by construction.
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Remark 2.4.13. If Ω is a smooth minimizer for Aθ, M has zero mean cur-
vature, and meets Rn with a fixed contact angle θ. It can be proved that this
conditions allow to write, in small balls centered ∂M , Ω as the region below
the graph of a Lipschitz function over Rn, and that, for some small γ, the
hypothesis of the previous Lemma are always satisfied.

We show now what happens when we apply the previous theorem to a
sequence of minimizers satisfying the assumptions of the previous Lemma with
the same γ and c0, and such that θ → 0. We need first the definition of local
Hausdorff convergence.

Definition 2.4.14. Suppose that Xi is a sequence of closed sets in Rn, and Ω
is an open set in Rn. We say that Xi converges in the local Hausdorff distance
in Ω to the closed set X, if for every compact set K ⊂ Ω, and every open set
U such that K ⊂ U ⊂ Ω, we have

lim
i→∞

distK,U (Xi, X) = 0,

where, for any pair of closed subsets X,Y of Ω, we define

distK,U (X,Y ) := max{ max
x∈X∩K

dist(x, Y ∩ U), max
y∈Y ∩K

dist(y,X ∩ U)}

Remark 2.4.15. It can be proven that, if Xi → X in the local Hausdorff
distance in Ω, then

d(·, Xi) → d(·, X), inL∞
loc(Ω).

Proposition 2.4.16. Let θi > 0 be a sequence with lim
i→∞

θi = 0, and let Ωi ⊂

Rn+1
+ be a sequence of open set with smooth boundary in B1, such that Ωi is a

minimizer for Aθi in B1, and let, as usual, Mi := ∂Ω ∩ Rn+1
+ .

Assume that, for some fixed γ, c0 > 0, (2.44) and (2.45) are satisfied by
each Mi.

Let ui : Bn
1/2 → [0,∞) be the function obtained in Lemma 2.4.12. Then,

up to a subsequence,
vi =

ui
tan(θi)

converges in (W 1,2
loc ∩C

α
loc)(B

n
1/2), for any α < 1, to a Lipschitz function v that

minimizes the Alt-Caffarelli functional J (2.40) in Bn
1/2.

Moreover, ∂{vi > 0} → ∂{v > 0} in the local Hausdorff distance in Bn
1/2,

and 1{vi>0} → 1{v>0} in L1
loc(B

n
1/2).
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Proof. Since, by Lemma 2.4.12, |vi|+Lip(vi) ≤ c(n, γ), by Ascoli-Arzelà The-
orem, up to a subsequence, there exists a function v : Bn

1/2 → [0,∞), such that
vi → v in L∞

loc(B
n
1/2) and in Cαloc(B

n
1/2), and v satisfies |v| + Lip(v) ≤ c(n, γ).

In particular, the convergence is strong in L2
loc, and, up to take another subse-

quence, ∇vi ⇀ ∇v weakly in L2, and, by lower semicontinuity of the L2−norm
of the gradient,

∥∇v∥2 ≤ lim inf
i→∞

∥vi∥2.

Being W 1,2 an Hilbert space, the strong convergence in W 1,2 will be proved
once we know that lim sup

i→∞
∥∇vi∥2 ≤ ∥∇v∥2.

Before proving this, we prove the local Hausdorff convergence of the free
boundaries, that will turn out to be useful to prov the strong convergence of
the functions.

Let us fix a compact set K ⊂ Bn
1/2, and an open set U ⊂ Bn

1/2, with
K ⊂ U . Fix ϵ > 0 small enough, and cover K ∩∂{v > 0} with a finite number
of balls (B(xj , ϵ))

k
j=1, such that xj ∈ K ∩ ∂{v > 0}, B(xj , ϵ) ⊂ U , such that

there exist yj ∈ B(xj , ϵ), with 0 < v(yj) < ϵ and, provided that ϵ is small
enough, such that B(yj , 2c(n, γ)ϵ) ⊂ U . Choose i0 ≥ 0 such that, for i ≥ i0,
0 < vi(yj) < ϵ, for any j = 1, ·k. Taking now x ∈ K ∩ ∂{v > 0}, there exists
j such that x ∈ B(xj , ϵ), thus d(x, ∂{vi > 0} ∩ U) ≤ ϵ+ d(yj , ∂{vi > 0} ∩ U).
By Lemma 2.4.12, d(yj , ∂{vi > 0}) ≤ c(n, γ)vi(yj) < c(n, γ)ϵ, thus, since
B(yj , 2c(n, γ)ϵ) ⊂ U , d(yj , ∂{vi > 0} ∩ U) = d(yj , ∂{vi > 0}) ≤ c(n, γ)ϵ, and
we proved that

max
x∈K∩∂{v>0}

d(x, ∂{vi > 0} ∩ U) → 0, as i→ ∞

Conversely, take xi ∈ ∂{vi > 0} ∩ K such that d(xi, ∂{v > 0} ∩ U) =
max

x∈∂{vi>0}∩K
d(x, ∂{v > 0} ∩ U). Using the Uhryson Lemma, is sufficient to

take a subsequence and assume that xi → x̄ ∈ K. Since x̄ ∈ K ⊂ U , it is
sufficient to prove that x̄ ∈ ∂{v > 0}, and we will have

max
x∈∂{vi>0}∩K

d(x, ∂{v > 0} ∩ U) ≤ d(xi, x̄) → 0, as i→ ∞.

If x̄ /∈ ∂{v > 0}, then there exists r > 0 such that v ≡ 0 on B(x̄, 2r) ⊂⊂ Bn
1/2.

Then vi =
ui

tan(θ) → 0 uniformly on B(x̄, 2r), and, by Lemma 2.4.11, for i big
enough vi ≡ 0 on B(x̄, r). Thus, xi /∈ ∂{vi > 0}, that is a contradiction.

We claim now that

lim
i→∞

1{vi>0} = 1{v>0}, inL1
loc(B

n
1/2).
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Indeed, let K be a compact subset of Bn
1/2, then

∥1{vi>0} − 1{v>0}∥L1(K) = ∥1{vi>0} − 1∥L1(K∩{u>0})

+ ∥1{vi>0}∥L1(K∩{u=0}o)

+ ∥1{vi>0}∥L1(K∩∂{v>0}).

The first and the second term converge to zero by dominated convergence,
thanks to the uniform convergence of vi to v on K. It is then sufficient to
prove that |∂{v > 0}| = 0. By Lebesgue’s differentiation theorem, almost
every x ∈ ∂{v > 0} has Lebesgue density equal to 1, i.e.

lim
r→0

|∂{v > 0} ∩B(x, r)|
ωnrn

= 1,

where ωn := |Bn
1 |. Take such an x, and take r such that (1 − 2−k)ωnr

n <
|B(x, r)∩∂{v > 0}|, with 4 < k ∈ N to be chosen properly. Take y ∈ B(x, r/8)
with v(y) > 0, and notice that, for any z ∈ B(y, r/4), B(z, r2−k) ⊂ B(x, r).
Then, we can find some z′ ∈ B(z, r2−k) ∩B(x, r) ∩ ∂{v > 0}, and we have

v(z) = v(z)− v(z′) ≤ c(n, γ)|z − z′| < c(n, γ)r2−k, z ∈ B(y, r/4).

Thus, if k is big enough, Lemma 2.4.11 and the uniform convergence of vi to
v imply that v(y) = 0. This means that there isn’t an x ∈ ∂{v > 0} with
Lebesgue density 1, and therefore |∂{v > 0}| = 0.

We prove now together that v is a minimizer and that lim sup
i→∞

∥∇vi∥L2(K) ≤

∥∇v∥L2(K), for any compact set K ⊂ Bn
1/2.

Take 0 < r < 1
2 , and take η ∈ C∞

c (Bn
r ), 0 ≤ η ≤ 1. Let us define

αi := vη + (1− η)vi,

and notice that αi and vi have the same trace on ∂Bn
1/2. Thus, as we did in

previous proofs, we can make a comparison between Ωi and the subgraph of
θiαi, and thanks to the minimality of Ωi with respect to Aθi , we get∫
Bn

r

(√
1 + tan2(θi)|∇vi|2 − cos(θi)

)
1{vi>0} ≤

∫
Bn

r

(√
1 + tan2(θi)|∇αi|2 − cos(θi)

)
1{αi>0}. (2.47)



CHAPTER 2. REGULARITY OF CAPILLARY HYPERSURFACES 48

Notice that, thanks to Lemma 2.4.12, tan(θi)αi gives a small perturbation of
M̃i, in the sense that, for i big enough, the pieces of Ωi ∩B3/4 ∩Bn

1/2 \Ωi have
positive distance, depending only on γ, from the region below graph(tan(θi)αi),
and (2.47) is then a rigorous application of minimality of Ωi, besides the region
below the graph of ui doesn’t cover the whole part of Ωi that lays in B3/4 ∩
π−1(Bn

1/2) .
Going back to the proof, if we use that

√
1 + x = 1+ x

2 +O(x2), and that
|∇vi| ≤ c(n, γ), we get∫

Bn
r

tan2(θ)
|∇vi|2

2
+ (1− cos(θ))1{vi>0} dx

≤ O(θ4i ) +

∫
Bn

r

tan2(θi)
|∇αi|2

2
+ (1− cos(θ))1{αi>0} +Oη(θ

4
i ) dx,

where, with the notation Oη we are underlyining the dependence of the O on
η, that is not a big deal, since we are now taking η fixed. We can divide the
inequality by tan2(θ), getting∫

Bn
r

|∇vi|2 + 1{vi>0} dx ≤ o(1) +

∫
Bn

r

|∇αi|2 + 1{αi>0} dx,

where o(1) is considered as i goes to ∞. Now, choose η = ηδ such that ηδ = 1
on Bn

r(1−δ), and η ≡ 0 on Bn
r \Bn

r(1−δ/2). With this choice, αi = v on Bn
r(1−δ),

thus, estimating with 1 the indicator function of {αi > 0} on Bn
r \Bn

r(1−δ), we
get ∫

Bn
r

|∇vi|2 + 1{vi>0} dx ≤ o(1) +

∫
Bn

r

|∇αi|2 dx

+

∫
Bn

r(1−δ)

1{v>0} dx+ ωnr
n(1− (1− δ)n)

Since |∇αi|2 = |∇η(v−vi)+η∇v+(1−η)∇vi|2, and since vi → v uniformly
on Bn

r , and |∇vi|, |∇v| ≤ c(n, γ), we have∫
Bn

r

|∇vi|2 + 1{vi>0} dx ≤ o(1)+
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∫
Bn

r

η2|∇v|2 + 2c(n, γ)(1− η) dx.

+

∫
Bn

r(1−δ)

1{v>0} dx+ ωnr
n(1− (1− δ)n).

Taking the lim sup as i → ∞ before, and then the limit as δ → 0, we finally
get

lim sup
i→∞

∫
Bn

r

|∇vi|2 ≤
∫
Bn

r

|∇v|2.

Take now w ∈ H1(Bn
r ), such that v−w ∈ H1

0 (B
n
r ). Since w has positive trace

on ∂Bn
r , it holds J(w+) ≤ J(w), hence we can assume that w ≥ 0. Then, if

we repeat the same proof as above, with wi := ηδw+ (1− ηδ)vi in place of αi,
getting ∫

Bn
r

|∇vi|2 + 1{vi>0} dx ≤ o(1) +

∫
Bn

r

|∇wi|2 dx

+

∫
Bn

r(1−δ)

1{w>0} dx+ ωnr
n(1− (1− δ)n).

The difference now is that we now vi → v in H1(Bn
r ), and thus ∇wi →

∇(ηδ(w − v) + v) in L2(Bn
r ), that yields to∫

Bn
r

|∇v|2 + 1{v>0} dx ≤

∫
Bn

r

|∇(ηδ(w − v) + v)|2 dx

+

∫
Bn

r(1−δ)

1{w>0} dx+ ωnr
n(1− (1− δ)n).

Using finally that we can choose ηδ such that |∇ηδ| ≲ 1
rδ , and that w − v ∈

H1
0 (B

n
r ), we can take the limit as δ → 0, obtaining

J(v) ≤ J(w).



CHAPTER 2. REGULARITY OF CAPILLARY HYPERSURFACES 50

Remark 2.4.17. We remark that, in order to be really precise, in order to
make rigorous the comparison between wi and vi in the previous proof, we
should have taken first φ ∈ C∞

c (Bn
r ) and v + φ in place of w, then use that

w− v ∈ H1
0 (B

n
r ) and take the limits φ→ w− v. This is because we want that

the subgraph of tan(θi)wi coincide with Ωi outside B1/2 for θi small.

Now we turn our attention into smooth cones with an isolated singularity.

Proposition 2.4.18. Let 2 ≤ n ≤ 6, and let c0(n) be the constant in Theorem
2.4.2. There exist constants θ0(n), d0(n) > 0 such that, if θ ∈ (0, θ0), and
Ω ⊂ Rn+1

+ is a smooth cone with an isolated singularity at zero, that is a
minimizer for Aθ, then

1

2c0
tan(θ)d(π(x), ∂M) < xn+1 < 2c0 tan(θ)d(π(x), ∂M), (2.48)

for all x ∈ M̃ ∩ V with d(π(x), ∂M) < d0, where

M̃ := {x ∈M : xn+1 = min
y∈M∪∂M :π(y)=π(x)

{yn+1}},

and V := Bn
2 \Bn

1/2 × (0,∞).

Proof. Suppose otherwise. Then there are θi → 0, Ωi cones minimizing Aθi ,
so that one of the inequalities in (2.48) fails for some xi ∈ M̃ ∩ Sn with
d(π(xi), ∂M ∩V ) =: di → 0. Since 2 ≤ n ≤ 6, thanks to the Simons’ Theorem,
M doesn’t have connected components in Rn+1\{0}∩Sn with positive distance
from Rn. Thus, since M is a minimal hypersurface in 2V meeting Rn at
a constant angle θi, (2.48) must hold in some neighbourhood of ∂M ∩ V .
Thus, we may choose di as above such that (2.48) holds for any x ∈ M̃ ∩ V
with d(π(x), ∂M) < di, and such that M̃ ∩ U2di(∂M) ∩ V is contained in the
graphic over Rn of a Lipschitz function defined on π(V ) ∩ U2di(∂M). Let us
define Ω′

i := (Ωi−π(xi))
di

, M ′
i := ∂Ω′

i ∩ Rn+1
+ = (Mi−π(xi))

di
, and denote x′i :=

xi−π(xi)
di

. Notice that, since xi lays on the graph of a continuous function ui
such that (2.48) holds for any point y in its graph with d(π(y), ∂M) < di,
(xi)n+1 ≤ 2 tan(θi)di. We can choose also xi ∈ Sn, because M̃i is homogeneus,
and the height bound is invariant on the radii. Since xi ∈ Sn, this implies that
|π(xi)| ≥ 1 − 4 tan2(θi)d

2
i is far from zero. Then, the singularity of M ′

i , that
is −π(xi)

di
, converges to infinity as i goes to infinity. Notice that, since we are

applying an horizontal translation, we are sending points of minimal height
of Mi in points of minimal height of M ′

i . Let us call M̃ ′
i the set of points at
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minimal height of M ′
i ∪ ∂M ′

i that lays in M ′
i . Moreover, x ∈ V if and only if

x′ = x−π(x)
di

is such that 2 > |dix′ + π(xi)| > 1
2 .

Thus, (2.48) holds for any x ∈ M̃ ′
i such that

d(π(x′), ∂M ′
i) < 1,

2 > |dix′ + π(xi)| >
1

2
,

and fails at x′i. Notice also that d(0, ∂M ′
i) = 1. For any R > 0, if i is big

enough, We can apply Lemma 2.4.12 and Proposition 2.4.16 in B(0, R). With
a dyagonal argument, up to a subsequence, we obtain a sequence of Lipschitz
functions ui : Rn → R such that ui

tan(θi)
converges to an entire minimizer of the

Alt Caffarelli functional v uniformly on compact subsets of Rn, ∂{ui > 0} →
∂{v > 0} in the local Hausdorff distance in Rn. Moreover, for any R > 0 and
i > i0(R), M̃ ′

i ∩ B(0, R) is contained in the graph of u. By Theorem 2.4.2,
and by Remark 2.4.15, we deduce that, for i ≥ i0 big enough, and for any
z : ui(z) > 0,

1

2c0
tan(θi)d(z, ∂{ui > 0}) < ui(z) < 2 tan(θi)d(z, ∂{ui > 0}), z ∈ Bn

1 .

Notice that x′i :=
xi−π(xi)

di
satisfies

π(x′i) = 0, (x′i)n+1 ≤ 2 tan(θi).

Thus, for i big enough, x′i ∈ B(0, 1). This means, scaling back, that (2.48)
holds for xi, that is a contradiction.

We have now all the ingredients necessary to prove the following Theorem.

Theorem 2.4.19. Let 2 ≤ n ≤ 6, and let θi → 0, Ωi be a sequence of cones
minimizing Aθi with an isolated singularity at 0, and Mi = ∂Ωi∩Rn+1

+ . Then,
for i sufficiently large, Mi is contained in the graph of a Lipschitz function ui
over Rn, and Mi = graph(u↾{u > 0}).Moreover, up to a subsequence, ui

tan(θi)

converges in (W 1,2
loc ∩ Cα)(Rn) to an entire minimizer v to the Alt-Caffarelli

functional J for all α ∈ (0, 1), and the free-boundaries ∂{ui > 0} → ∂{v > 0}
in the local Hausdorff distance.

Proof. Let θ0(n), d0(n) given by 2.4.18, If i is such that θi < θ0, we know
that any x ∈ M̃i ∩ V ∩ Ud0(∂M) satisfy (2.48), where M̃i and V are the same
as in the statement of Proposition 2.4.18. Let V ′ be Bn

3/2 \ B
n
3/4 Repeating

the proof of Lemma 2.4.12, using that d0 depends only on n, and that any
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connected component of Mi ∩ V ′ touches ∂Mi ∩ V ′, we can find a Lipschitz
function ui : V ′ ∩ Rn → R, such that

Mi ∩ V ′ ∩ Rn+1
+ = graph(u)⌞{ui > 0},

∂Mi ∩ V ′ = ∂{ui > 0},
1

c(n)
tan(θ)d(z, ∂{ui > 0}) ≤ ui(z) ≤ c(n)d(z, ∂{ui > 0}), z ∈ {ui > 0}.

In particular, if θ0 is small enough, Mi∩V ′ lays at height smaller than 1
1000 , so

that, being C := B5/4 \B4/5, since any point of Mi ∩ C is connected to some
point in Mi ∩ C ∩ V ′, we must have Mi ∩ C ⊂ V ′. We proved that Mi ∩ C
is contained in the graph of ui, and by homogeneity, ui can be extended to
the whole Rn, so that Mi = graph{ui}⌞{ui > 0}. Now, the same proof of
Proposition 2.4.16 can be applied, so that we get the thesis.

At this point, in order to prove Theorem 2.2.3 in the case of θ close to
zero, Chodosh, Edelen and Li take any sequence of minimizers Ωi for Aθi .
Thanks to Theorem 2.4.19, up to a subsequence, Mi are the graph of Lipschitz
functions ui over Rn, such that vi = ui

tan(θi)
coverges to a one-homogeneus

minimizer of the Alt-Caffarelli functional v. Since n = 4, thanks to Theorem
2.4.3, there exists some unit vector ω such that v = (x·ω)+. They improve this
convergence through elliptic estimates, and, thanks to the connection between
∇2ui and AMi , they are able to conclude that

lim
i→∞

|AMi |
tan(θi)

= 0, uniformly on anyK ⊂ Rn+1
+ compact.

Once they have this uniform convergence, they use the Simons’equation and

estimates on
∣∣∣∣∂|AMi

|2
tan(θ)i

∣∣∣∣, in order to conclude that, for i big enough, |AMi | = 0.

We refer to [2] for the details.
We chose a different path, that we present in the next section.

2.5 Alternative proof for n = 3, and alternative
proof for n = 4 with θ close to 0

Here we use ideas similar to the ones of Jerison and Savin in [3]. We were able
to deal with the case n = 3, but, for a matter of time, we were not able to
conclude the case n = 4. However, in view of the analogies with [3], we think
that we just have to take the analogue of their competitor also in dimension
n = 4, and to check that it works.
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At first, we give an instability critherion.

Proposition 2.5.1. Let E ⊂ Rn+1
+ be a smooth minimizing cone. Suppose

that k ∈ R and that c ∈ C∞
c (Rn+1 \ {0}) is a k-homogeneous non-negative

function satisfying

∆Mc+ |A|2c ≥ Λ

|x|2
c in M, cot(θ)cη ·Aη −∇Mc · η ≥ 0 on ∂M,

for some Λ ∈ R. If

Λ >
(2− n− 2k)2

4
,

then c ≡ 0.

Proof. Take a test function 0 ≤ φ ∈ C∞
c (Rn+1 \ {0}). An integration by parts

gives ∫
M

∇Mc · ∇Mφ− |A|2cφ ≤ −
∫
M

Λ

|x|2
cφ+

∫
∂M

cot(θ)η ·Aηcφ.

Take now 0 ≤ f ∈ C∞(Sn), 0 ≤ h ∈ C∞
c (0,∞) with

∞∫
0

h > 0, and let

φ(ωr) = f(ω)h(r), where ω ∈ Sn and r > 0. Using the coarea formula and
the homogeneity of the functions involveed, by the previous inequality we get

∞∫
0

rn−1

∫
Σ

rk−2h(r)∇Σc(ω) · ∇Σf(ω) + rk−1∇Mc(ω) · ωh′(r) dHn(ω) dr

+

∞∫
0

rn−1

∫
Σ

−rk−2|A|2(ω)c(ω)f(ω)h(r) + Λrk−2c(ω)f(ω)h(r) dHn(ω) dr

≤
∞∫
0

rn−2

∫
∂Σ

rk−1 cot(θ)η ·Aηc(ω)f(ω)h(r) dHn(ω) dr.

Notice now that, being c k-homogeneus, ∇Mc(ω) · ω = kc(ω). In order to
have the same radial in any term of the inequality, we integrate by parts
∞∫
0

krn+k−2h′(r) dr = −
∞∫
0

k(n+k−2)h(r)rn+k−3 dr, and we divide by
∞∫
0

h(r)rn+k−3 dr,

thus∫
Σ

∇Σc · ∇Σf − |A|2cf −
∫
∂Σ

cot(θ)η ·Aηcf ≤
(
k(n+ k − 2)− Λ

)∫
Σ

cf.
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Taking f = c, and noting that k(n+ k − 2)−Λ < − (n−2)2

4 , if c were non zero
we would have a contradiction by (2.22).

Remark 2.5.2. Notice that, for 1 ≥ α > 0,

∆M |A|α + |A|α|A|2 = αdiv
(
|A|α−2∇M |A|2

2

)
+ |A|α+2

= α|A|α−2∆M |A|2

2

+ α

(
α− 2

)
|A|α−2|∇M |A||2 + |A|α+2.

Fix now λ ∈ (0, 1). A consequence of the Simons’ inequality (see 2.65), together
with the last computation, implies that c = |A|α satisfies

∆M |A|α + |A|2|A|α ≥ |A|α+2(1− α)

+ 2λα
|A|α

|x|2

α|A|α−2|∇M |A||2
(
α− 2 + λ+ (1− λ)

(
1 +

2

n

))
.

Thus, if n = 3, α = 1
2 and λ = 1

4 , we get

∆M |A|α + |A|2|A|α ≥ 1

4

|A|α

|x|2
. (2.49)

Notice that |A|α is homogeneus of degree −α = −1
2 =: k. Whith n = 3,

and letting Λ = 1
4 ,

Λ >
(2− n− 2k)2

4
= 0.

Thus, for α = 1
2 , |A|

α satisfies the interior inequality on M in the hypothesis
of Proposition 2.5.1.

Notice that |A|α is not smooth and compactly supported, but, with an
argument similar to the one in proof of Theorem 1.3.10, we can make the
proof of Proposition 2.5.1 work also for c = |A|α.

What is missing for |A|α is the boundary inequality, to which will be de-
voted the rest of this section.

Lemma 2.5.3 (Sign of curvature at the boundary). Let Ω be a smooth cone
that is a minimizer of (2.1). If en+1 ·ν ̸= 0 on the whole M , then, at any point
x0 ∈ ∂M , holds

η ·Aη ≥ 0
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Proof. Let us consider the function |∇Mxn+1|2, that is well defined on the
whole M. We have

∇Mxn+1 = en+1 − (en+1 · ν)ν,

then

|∇Mxn+1|2/2 = (1− (en+1 · ν)2)/2,

and so

∇M |∇Mxn+1|2/2 = −(en+1 · ν)∇M (en+1 · ν)
= −(en+1 · ν)Aen+1.

Notice that, at ∂M , Aen+1 = Aη(en+1 · η) = − sin(θ)Aη, since en+1 ⊥ T∂M ,
and Aν = 0 = A(x)x. Therefore, at ∂M ,

∂η|∇Mxn+1|2/2 = sin(θ) cos(θ)η ·Aη,

and we just need to prove that ∂η|∇Mxn+1|2/2 ≥ 0.
A straightforward computation gives

∆M |∇Mxn+1|2/2 = −|Aen+1|2 − (en+1 · ν)divM (Aen+1).

We want now to find a more convenient expression for divM (Aen+1), in order to
make a comparison with |Aen+1|2 and establish the sign of ∆M |∇Mxn+1|2/2.
Since Aν = 0, Aen+1 = Aτ , where τ := en+1 − (en+1 · ν)ν. Let s : Ω → R
be the signed distance from M , and let us denote with an upper index the
coordinates of τ . Using the Einstein convention for repeated inexes,

divM (Aτ) = ∂i(sijτ
j)

= ∇(∆s) · τ + sijτ
j
i

= ∇(∆s) · τ − (en+1 · ν)sijνji − (en+1 · νi)sijνj .

Now, since τ ∈ TM , and ∆s = Tr(A) ≡ 0 on M , ∇(∆s) · τ = 0. Moreover,
sijν

j = (Aν)i = 0, and νji = sij , so that

∆M |∇Mxn+1|2/2 = −|Aen+1|2 + (en+1 · ν)2|A|2. (2.50)

Let us call v := |∇Mxn+1|2/2
If we knew that ∆M |∇Mxn+1|2/2 ≥ 0 on M we could conclude the proof

by the maximum principle, but we don’t have a priori any control of (en+1 · ν)
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away fromn ∂M . Since our hypothesis is that en+1 · ν ̸= 0, we can define the
smooth vector field on M by

b := − Aen+1

(en+1 · ν)
,

so that b · ∇Mv = |Aen+1|2. Thus, v is a strong solution of the equation

∆Mv + b · ∇Mv = (en+1 · ν)2|A|2 ≥ 0, (2.51)

and the maximum principle gives

ηAη ≥ 0 at ∂M.

The boundary inequality

Here we fix x0 ∈ ∂M \{0}, and we write Ω locally in x0 as a graph of a positive
function u : Rn → [0,∞), with u(x0) = 0. Up to an isometry we can assume
that T∂M (x0) = Rn−1, and thus

ui(x0) = 0, i < n.

As a consequence we have that TM (x0) = Rn−1 ⊕ Span(en, un(x0)), and thus

η(x0) =
(en, un(x0))√
1 + |∇u|2(x0)

, ν ◦ ψ(x) = (−∇u(x), 1)√
1 + |∇u|2(x0)

where we are assuming also that un(x0) < 0, and we are calling
ψ(x) = (x, u(x)). Since ∂M lies on Rn, then ψ is the identity on ∂M .

Thus, taking a path γ(t) with values in ∂M ,

u ◦ γ ≡ 0.

Taking two derivatives of this condition we get

∇uγ(t) · γ′(t) = 0,

∇uγ(t) · γ
′′
(t) +

n∑
j=1

∇uj · γ′(t)(γ′(t) · ej) = 0.

Taking γ such that γ(0) = x0 and γ′(0) = ei, i < n, the second equation
becomes

unγ
′′
(0) · en + uii = 0, i < n (2.52)
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The boundary condition en+1 · ν = cos(θ) is, for x ∈ ∂M ,

|∇u|2(x) = tan2(θ). (2.53)

We want to derive informiations taking derivatives of this condition. Take γ(t)
a path with values in ∂M , and taking first and second derivatives of (2.53)
along γ we get:

n∑
j=1

uj∇uj · γ′(t) = 0, (2.54)

n∑
j=1

|∇uj · γ′(t)|2 + uj∇uj · γ
′′
(t) +

n∑
j=1

n∑
k=1

uj∇ujk · γ′(t)(γ′(t))k = 0, (2.55)

where we indicate with the upper idexes the coordinates of γ′. Evaluating the
first equation at x0 we can write,

uni(x0) = 0, i < n, (2.56)

and by that we can also, up to an isometry, assume that ∇2u(x0) is diagonal,
and that u is 0-homogeneous at x0 in direction e1. By that, we can take
γ′(x0) = ei with i < n, and we can evaluate in x0 the second equation in
(2.54), getting

u2ii + ununnen · γ
′′
(0) + ununii = 0,

that is, by (2.52),

u2ii − uiiunn + ununii = 0, i < n. (2.57)

Like in the proof of Lemma 1.3.8, we can write

−A ◦ ψ(x) = ∇2u(x)√
1 + |∇u|2(x)

g−1,

thus

|A|2(x0) = (1 + tan2(θ))−1

(∑
i<n

u2ii +
u2nn

(1 + tan2(θ))2

)
(2.58)

, and the zero mean curvature condition on M at x0 reads as∑
i<n

uii = − unn
1 + tan2(θ)

. (2.59)
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Notice that, if i < n, Tr(∇ui ⊗∇u) =
n∑
j=1

uijuj = uinun = 0, and in the same

way ∂i|∇u|2m = 0, for any natural number m.
For the derivative in direction η at x0,

0 = ∂n(Id) = ∂n(gg
−1) = ∂ngg

−1 + g∂n(g
−1),

thus
∂n(g

−1) = −g−1∂n(g)g
−1.

Taking into account that ∇un ⊗∇u(x0) is dyagonal, and that, in our coordi-
nates, its only non zero entrance is the one in position (n, n), and that g−1(x0)
has (1 + tan2(θ))−1 as (n, n) entrance, we have

∂ng
−1(x0) = −2g−1∇un ⊗∇ug−1 = − 2

(1 + tan2(θ))2
∇un ⊗∇u,

thus,

− ∂n(A ◦ ψ) = ∇2un√
1 + tan2(θ)

g−1 + unn tan(θ)
∇2u

(1 + tan2(θ))3/2
g−1

− 2
∇2u

(1 + tan2(θ))5/2
∇un ⊗∇u, (2.60)

and the condition Tr(∂n(A ◦ ψ)) = 0 reads as∑
i<n

uiin +
unnn

1 + tan2(θ)
+ 2u2nn

tan(θ)

(1 + tan2(θ))2
= 0. (2.61)

Notice also that, in our coordinate system,

η ·Aη(x0) = − unn

(1 + tan2(θ))3/2
. (2.62)

Here we are abusing in the notation, since, during the proof, we referred at A
as an n×n matrix in our coordinates, but we recall that A can also be thought
as an (n+ 1)× (n+ 1)-symmetric matrix that is zero in the normal direction
to M .

We want to find a manageable expression for the boundary term ∂η|A|2.
By the choice of our coordinates,

∂η|A|2(x0) =
∂n(|A|2 ◦ ψ)√
1 + tan2(θ)

(x0),
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and

(1 + tan2(θ))∂n

(
|A|2 ◦ ψ

2

)
(x0) = (1 + tan2(θ))Tr(∂n(A ◦ ψ)A ◦ ψ)

=
∑
i<n

uiinuii +
unnnunn

(1 + tan2(θ))2

+ unn
tan(θ)

1 + tan2(θ)

(∑
i<n

u2ii +
u2nn

(1 + tan2(θ))2

)
+ 2u3nn

tan(θ)

(1 + tan2(θ))3
.

We want now to use all our previous equations in the case in which the dimen-
sion is n = 3. By homogeneity in the e1 direction,

u11 = u113 = 0.

The equation (2.57), together with (2.59), gives an expression of u223 in terms
of u33:

u223 =
u222

tan(θ)
− 1

tan(θ)
u33u22

= u233

(
1

tan(θ)(1 + tan2(θ))2
+

1

tan(θ)(1 + tan2(θ))

)
= u233

2 + tan2(θ)

tan(θ)(1 + tan2(θ))2
,

and by (2.61) we can write u333 in terms of u33:

u333
1 + tan2(θ)

= −u223 − 2u233
tan(θ)

(1 + tan2(θ))2

= −u233
1

tan(θ)(1 + tan2(θ))2

(
2 + 3 tan2(θ)

)
.

Putting everything together, and using again u222 =
u233

(1+tan2(θ))2
, and (2.58), we

can write

(1 + tan2(θ))∂3

(
|A|2 ◦ ψ

2

)
(x0) = −u333

2 + tan2(θ)

tan(θ)(1 + tan2(θ))3

− u333
2 + 3 tan2(θ)

tan(θ)(1 + tan2(θ))3
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+ 2u33|A|2 tan(θ)

= −4u333
1 + tan2(θ)

tan(θ)(1 + tan2(θ))3

+ 2u33|A|2 tan(θ)

= −2u33|A|2
1

tan(θ)

Since u33 = −η ·Aη(1+tan2(θ))3/2, we can summarize the previous discussion
in the following theorem.

Theorem 2.5.4. If Ω is a smooth cone, and n = 3, then

∂η
|A|2

2
= 2 cot(θ)η ·Aη|A|2, at ∂M (2.63)

Corollary 2.5.5. Let n = 3. Then c := |A|
1
2 satisfies the hypothesis of Propo-

sition 2.5.1.
In particular, |A| ≡ 0.

Proof. Let α = 1
2 . We just need to check that c = |A|α satisfies

cot(θ)|A|αη ·Aη − ∂η|A|α ≥ 0, at ∂M.

By (2.63),

∂η|A|α = α|A|α−2∂η
|A|2

2
= 2α cot(θ)η ·Aη|A|α.

Therefore,

cot(θ)|A|αη ·Aη − ∂η|A|α =

(
cot(θ)|A|αη ·Aη

)
(1− 2α) = 0,

since α = 1
2 .

Let use generalize the computations to any dimension. For any n we have
the formula

(1 + tan2(θ))∂n

(
|A|2 ◦ ψ

2

)
(x0) = (1 + tan2(θ))Tr(∂n(A ◦ ψ)A ◦ ψ)

=
∑
i<n

uiinuii +
unnnunn

(1 + tan2(θ))2

+ unn
tan(θ)

1 + tan2(θ)

(∑
i<n

u2ii +
u2nn

(1 + tan2(θ))2

)
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+ 2u3nn
tan(θ)

(1 + tan2(θ))3
.

Now ∑
i<n

uiinuii = − 1

un

∑
i<n

u3ii +
unn
un

∑
i<n

u2ii

= cot(θ)
∑
i<n

u3ii − cot(θ)unn
∑
i<n

u2ii,

while
unnnunn

(1 + tan2(θ))2
=− 2u3nn

tan(θ)

(1 + tan2(θ))3

−
∑
i<n

uiinunn
1 + tan2(θ)

=− 2u3nn
tan(θ)

(1 + tan2(θ))3

+
u2nn

tan(θ)(1 + tan2(θ))

∑
i<n

uii

− unn
tan(θ)(1 + tan2(θ))

∑
i<n

u2ii

= −2u3nn
tan(θ)

(1 + tan2(θ))3

− u2nn
(1 + tan2(θ))

unn
tan(θ)(1 + tan2(θ))

− unn
tan(θ)(1 + tan2(θ))

∑
i<n

u2ii

=− 2u3nn
tan(θ)

(1 + tan2(θ))3

Thus,

(1 + tan2(θ))∂n(
|A|2

2
) = cot(θ)

(∑
i<n

u3ii +
u3nn

(1 + tan2(θ))3

)
− cot(θ)unn

∑
i<n

u2ii

− cot(θ)
u3nn(2 + tan2(θ))

(1 + tan2(θ))3
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− cot(θ)
unn

1 + tan2(θ)

∑
i<n

u2ii

+ cot(θ)unn tan
2(θ)|A|2

= cot(θ)

(∑
i<n

u3ii +
u3nn

(1 + tan2(θ))3

)
− cot(θ)unn

2 + tan2(θ)

1 + tan2(θ)

∑
i<n

u2ii

− cot(θ)unn
2 + tan2(θ)

1 + tan2(θ)

u2nn
(1 + tan2(θ))2

+ cot(θ)unn tan
2(θ)|A|2

= cot(θ)

(∑
i<n

u3ii +
u3nn

(1 + tan2(θ))3

)
− cot(θ)unn(2 + tan2(θ))A|2

+ cot(θ)unn tan
2(θ)|A|2

= cot(θ)

(∑
i<n

u3ii +
u3nn

(1 + tan2(θ))3
− 2unn|A|2

)
.

This proves that

Theorem 2.5.6.

∂η
|A|2

2
= cot(θ)

(
2η ·Aη|A|2 −

n∑
i=1

λ3i

)
, (2.64)

where (λi)
n
i=1 are the eigenvalues of A.

Under the assumptions of Lemma 2.5.3 notice that now we have

• The instability crytherion given by Proposition 2.5.1.

• The boundary curvature term η ·Aη ≥ 0.

• An expression of 1
cot(θ)∂η|A|

2 in terms of η · Aη, |A|2 and the sum of
cubes of the eigenvalues of A.

• The Simons’ inequality.

Making a comparison with [3], the next step would be to take the right function
of the eigenvalues of A as a competitor in Proposition 2.5.1. We had no time
to find the right competitor and proving that it works. However, we leave here
our candidate as a conjecture.
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Conjecture 2.5.7. Let n = 4, and let

w2 := 4
∑
λk>0

λ2k +
∑
λk<0

λ2k,

Where λk are the eigenvalues of A.
Then, if the assumptions of Lemma 2.5.3 are satisfied, c := w

1
3 satisfies

the hypothesis of Proposition 2.5.1.
In particular, |A| ≡ 0.

2.6 The case 4 ≤ n ≤ 6 with θ close to π
2

When the angle θ is close to π
2 , it is just sufficient to choose the right competitor

in the Stability inequality, like in the proof of Simons’ Theorem.
We first introduce a slightly improved version of the Simons’ inequality.

Lemma 2.6.1. Let Ω ⊂ Rn+1 be an open cone with an isolated singularity at
0, such that ∂Ω :=M has zero mean curvature. Thenm for any λ ∈ (0, 1),

∆M
|A|2

2
+ |A|4 ≥ λ

(
2
|A|2

|x|2
+ |∇M |A||2

)
+ (1− λ)

(
1 +

2

n

)
|∇M |A||2. (2.65)

Proof. Thanks to the Simons’ inequality, it is sufficient to prove that

∆M
|A|2

2
+ |A|4 ≥

(
1 +

2

n

)
|∇M |A||2.

Fix p ∈ M , and take coordinates around p given by u, like in the proof of
Theorem 1.3.9. Then, we have at p,

∆M
|A|2

2
+ |A|4 =

n∑
ijk=1

u2ijk,

A = ∇2u

and

|A|2|∇M |A||2 =
n∑
i=1

( n∑
j,k=1

uijkujk

)2

.

Thus, by the Cauchy-Schwartz inequality, and since ∇2u is dyagonal at p,

|∇M |A||2 ≤
n∑

ij=1

u2iij . (2.66)
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Since the mean curvature of M is zero, so is its first derivative, so, by Lemma
1.3.8,

uiii = −
∑
j ̸=i

ujji.

Thanks to the Cauchy-Schwartz inequality, for any b1, ·bn real numbers,(n−1∑
i=1

bi

)2

≤ (n− 1)
n−1∑
i=1

b2i ,

that, together with the previous estimates, gives,

|∇M |A||2 ≤
∑
i ̸=j

u2iij +
n∑
i=1

(∑
j ̸=i

uiij

)2

≤
∑
i ̸=j

u2iij + (n− 1)
n∑
i=1

∑
j ̸=i

u2iij

= n
∑
i ̸=j

u2iij .

Combining this equation with (2.66), we get(
1 +

2

n

)
|∇M |A||2 ≤

n∑
i,j,k=1

u2ijk,

that ends the proof.

We need now a trace inequality involving the contact angle.

Lemma 2.6.2. Let Ω ⊂ Rn+1
+ an open set with M := ∂Ω∩Rn+1

+ smooth up to
the boundary, meeting Rn at a constant angle θ. Then, for any u ∈ C∞

c (M),
we have ∫

∂M

u ≤ 1

sin(θ)

∫
M

|∇u| (2.67)

Proof. Consider the vector field ξ(x) := −φR(xn+1)en+1, where φR : [0,∞) ∈
[0, 1) is a smooth function such that φR = 1 on [0, R], φR = 0 on [2R,∞], and
|φ′
R| ≤

2
R . Since ξ · η0 sin(θ) at ∂M , thanks to the divergence theorem,∫

∂M

u =
1

sin(θ)

∫
∂M

uξ · η
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=
1

sin(θ)

∫
M

divM (uξ)

≤ 1

sin(θ)

∫
M

|∇Mu||ξ|+ udivMξ

≤ 1

sin(θ)

∫
M

|∇Mu|+ 2
u

R
.

Taking the limit as R→ ∞ we obtain the thesis.

Remark 2.6.3. In the next proof, we apply the stability inequality, the in-
tegration by parts, and the trace inequality for functions not smooth and
compactly supported in Rn+1 \ {0}, but an approximation argument makes
the proof below rigorous.

Proof of Theorem 2.2.3 when θ is close to π
2 . .

Let p ∈ (12 , 1) to be chosen later. For any λ ∈ (0, 1), by (2.65), we can wrie

∆M |A|2p

2
=
p

2
div(|A|2p−2∇M |A|2)

= p
∆M |A|2

2
|A|2p−2 + p(2p− 2)|A|2p−2|∇M |A||2

≥ p|A|2p−2|∇M |A||2
(
(1− λ)

(
1 +

2

n

)
+ λ+ 2p− 2

)
+ p|A|2p

(
2λ

|x|2
− |A|2

)
. (2.68)

Let r = |x|, and take f = f(r) to be a radial Lipschitz function compactly
supported in Rn+1 \ {0}. Plugging φ = f |A|2p into the stability inequality
(2.21) and integrating by parts, we obtain

cot(θ)

∫
∂M

η ·Aη|A|2pf2 +
∫
M

|A|2p+2f2 ≤
∫
M

|∇M (f |A|p)|2

=

∫
M

p2|A|2p−2|∇M |A||2f2 + |A|2p|∇Mf |2 +
1

2
∇M |A|2p · ∇Mf

2

=

∫
M

p2|A|2p−2|∇M |A||2f2 + |A|2p|∇Mf |2

−
∫
M

f2

2
∆M |A|2p +

∫
∂M

f2

2
∂η|A|2p. (2.69)
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By (2.64), we have

∂η
|A|2

2
= cot(θ)

( n∑
i=1

λ3i − 2η ·Aη|A|2
)
,

where λi are the eigenvalues of A. Notice now that, for any i = 1 → n, by the
Cauchy-Schwartz inequality,

|λi| =
∣∣∣∣∑
j ̸=i

λj

∣∣∣∣
≤

√
n− 1

(∑
j ̸=i

λ2i

)1/2

≤
√
n− 1|A|,

thus ∣∣∣∣ n∑
i=1

λ3i

∣∣∣∣ ≤ √
n− 1

n∑
i=1

λ2i |A| =
√
n− 1|A|3.

From this, we get ∣∣∣∣∂η |A|22
∣∣∣∣ ≤ 3 cot(θ)

√
n− 1|A|3.

Using this bound and (2.67), we can estimate∣∣∣∣cot(θ) ∫
∂M

η ·Aη|A|2pf2 −
∫
∂M

f2

2
∂η|A|2p

∣∣∣∣ ≤ c(n) cot(θ)

∫
∂M

f2|A|2p+1

≤ c(n)
cot(θ)

sin(θ)

∫
M

|∇M (f2|A|2p+1)|

≤ c(n)
cot(θ)

sin(θ)

∫
M

(2p+ 1)|∇M |A|||A|2pf2 + 2|f ||∇Mf ||A|2p+1

≤ c(n)
cot(θ)

sin(θ)

∫
M

3|∇M |A|||A|−1/2|A|1/2|A|2pf2 + 2|f ||∇Mf ||A|2p+1

≤ c(n)
cot(θ)

sin(θ)

∫
M

3|∇M |A||2|A|2p−2f2 + f2|A|2p+2 + 2|f ||A|p|∇Mf ||A|p+1

≤ c(n)
cot(θ)

sin(θ)

∫
M

3|∇M |A||2|A|2p−2f2 + 2f2|A|2p+2 + |∇Mf |2|A|2p,
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where c(n) is a positive constant depending only on n. We used in the compu-
tations above that 3ab ≤ 3a2+ b2, ab ≤ a2

2 + b2

2 , and that 2p+1 < 3. Plugging
this into (2.69), and using (2.68), we get

0 ≤
∫
M

|A|2p−2|∇M |A||2f2
(
c(n)

cot(θ)

sin(θ)
+ p

(
−p+ 2− (1− λ)(1 +

2

n
)− λ

))

+

∫
M

|∇Mf |2|A|2p(1 + c(n)
cot(θ)

sin(θ)
)− 2pλ

|A|2p

|x|2
f2

+

∫
M

|A|2p+2f2(p+−1 + 2c(n)
cot(θ)

sin(θ)
) (2.70)

set ϵ > 0, and define the radial lipschitz function f(r) by

f(r) =

{
r1+ϵ, r ≤ 1

r2−n/2−ϵ.

f is not compactly supported, but
∞∫
0

rn−2f(r) dr <∞, and thus the right hand

side of (2.69) is finite with this choice of f .
Like in the proof of Theorem 1.3.10, now is just a matter of computation. It

can be seen that, if θ ∈ (θ1(n),
π
2 ) is close enough to π

2 , we can choose parameter
p, ϵ, λ such that, when n ≤ 6, (2.70) is satisfied if and only if |A| = 0.
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