On the logarithmic epiperimetric inequality

Bozhidar Velichkov Università degli Studi di Napoli Federico II

Given: - a domain
$$D \subseteq \mathbb{R}^d$$
, φ is the obstacle - a function $\varphi : D \to \mathbb{R}$, φ is the obstacle $f \geq \varphi$ on ∂D

Minimize $\int_D |\nabla w|^2 dx$ among all the functions $w:D\to\mathbb{R}$ such that w=f on ∂D and $w\geq \varphi$ in D.

Minimize
$$\int_D |\nabla w|^2 dx$$
 among all the functions $w: D \to \mathbb{R}$

such that w = f on ∂D and $w \ge \varphi$ in D.

Setting:

$$u := w - \varphi$$

 $g := f - \varphi$

$$\int_{D} |\nabla w|^{2} dx = \int_{D} |\nabla (u + \varphi)|^{2} dx$$

Standart assumtion:
$$\Delta \varphi = \frac{1}{2} |\nabla u|^2 dx + \int_D 2\nabla \varphi \cdot \nabla u dx + \int_D |\nabla \varphi|^2 dx$$
$$= \int_D |\nabla u|^2 dx + \int_D (2\Delta \varphi) u dx + \text{const.}$$

Minimize
$$\int_D (|\nabla u|^2 + u) dx$$
 among all the functions $u : D \to \mathbb{R}$ such that $u = g$ on ∂D and $u \ge 0$ in D .

1968 Brezis-Stampacchia (*Bull. Soc. Math. Fr.*) - $u \in C^{1,\alpha}$

Corollary: •
$$\Omega_u = \{u > 0\}$$
 is open

- $\Delta u = 1/2$ in Ω_u
- ∇u is defined on $\partial \Omega_u$.

Optimality condition:

$$|\nabla u| = 0$$
 on $\partial \Omega_u$

$$\Delta u = \frac{1}{2} \mathbb{1}_{\{u > 0\}} \quad \text{in} \quad B_1$$

1973 Gerhardt (*Arch. Rat. Mech. Anal.*) - $u \in C^{1,1}$

Blow-up:

For $x_0 \in \partial \Omega_u$ and r > 0, define

$$u_{r,x_0}(x) := \frac{1}{r^2}u(x_0 + rx)$$

Then: • u_{r,x_0} is a solution in B_1 ;

•
$$|\partial_i \partial_j u_{r,x_0}| \leq C$$
.

Corollary (Compactness of the blow-up sequences). Let $r_n \to 0$ and $x_0 \in \partial \Omega_u$.

Then, up to a subsequence,

$$u_{r_n,x_0}(x) := \frac{1}{r_n^2} u(x_0 + r_n x),$$

converges to a **blow-up limit** u_0 .

Regular blow-up limits.

The blow-up limit $u_0: B_1 \to \mathbb{R}$ is regular if there is a vector $\nu \in \partial B_1$ such that $u_0 = h_{\nu}$.

Half-plane solutions:

$$h_{\nu}(x) = \frac{1}{2}(x \cdot \nu)_{+}^{2}$$

Singular blow-up limits.

The blow-up limit $u_0 : B_1 \to \mathbb{R}$ is singular if there is a matrix A such that $u_0 = Q_A$.

Global singular solutions:

$$Q_A(x) = \frac{1}{2}x \cdot Ax$$
 where $tr A = \frac{1}{4}$.

Theorem (Caffarelli):

The free boundary can be decomposed as

$$\partial\Omega_u = Reg(\partial\Omega_u) \cup Sing(\partial\Omega_u)$$

$$Reg(\partial\Omega_u) := \left\{ x_0 \in \partial\Omega_u : \text{ every blow-up at } x_0 \text{ is } \mathbf{regular} \right\}$$

$$Sing(\partial\Omega_u) := \left\{ x_0 \in \partial\Omega_u : \text{ every blow-up at } x_0 \text{ is } \mathbf{singular} \right\}$$

Structure of the regular part of the free boundary

1977 Caffarelli (*Acta Math.*) - $Reg(\partial \Omega_u)$ is a $C^{1,\alpha}$ -regular manifold.

1977 Kinderlehrer-Nirenberg (*Ann. Sc. Norm. Sup. Pisa*) - $C^{1,\alpha} = > analytic$.

What about the (closed) singular set $Sing(\partial \Omega_u)$?

1976 Schaeffer (Ann. SNS Pisa)1991 Sakai (Acta Math.)1996 Sakai (Ann. SNS Pisa)1999 Weiss (Invent. Math.)

- $\Gamma \in C^1$ (Caffarelli-Riviere, Monneau); $\Gamma \in C^{1,\alpha}$ (Weiss);
- $\Gamma \cap Sing \ might be a \ Cantor set if \ \Delta u = f(x) \mathbb{1}_{\{u>0\}}$ (Schaeffer);
- $\Gamma \cap Sing$ is finite if f(x) is analytic (Sakai).

Stratification of the singular set

• At every $x_0 \in Sing$ the blow-up is **unique** (Caffarelli'98):

$$u_{x_0} = Q_{A_{x_0}} = x \cdot A_{x_0}[x]$$

• Every $x_0 \in Sing$ has a rank:

$$Rank(x_0) = \dim \operatorname{Ker} A_{x_0}.$$

• We define the *m*-th **stratum** Σ_m of the singular set as:

$$x_0 \in \Sigma_m \Leftrightarrow \operatorname{Rank}(x_0) = m.$$

1998 Caffarelli (*J. Fourier Anal. Appl.*): $\Sigma_m \in C^1$

2001 Monneau (*Progr. Math.*): $\Sigma_m \in C^1$

2018 Colombo-Spolaor-Velichkov (*Geom. Funct. Anal.*): $\Sigma_m \in C^{1,\log}$

2018 Figalli-Serra (*Invent. Math.*): $C^{1,\log}$ is optimal, but Σ_m is a.e. $C^{1,1}$ or better.

Minimal surfaces

Reifenberg (*Ann. of Math.*) - regularity;

Jean Taylor (*Ann. of Math.*) - Y-type singularities;

Brian White (*Duke Math. J.*) - two-dimensional currents.

The Weiss approach to the regularity of the flat free boundaries

Weiss (*Invent. Math.*) - obstacle problem;

Focardi-Spadaro (Adv. Diff. Eq.) - thin-obstacle problem;

Garofalo-Petrosyan-Vega Garcia (J. Math. Pures Appl.) - thin-obstacle problem.

Direct approach -> log-epiperimetric inequality -> constructive approach

Spolaor-Velichkov (*Comm. Pure Appl. Math.*) - the one-phase problem;

Colombo-Spolaor-Velichkov (Geom. Funct. Anal.) - obstacle problem;

Colombo-Spolaor-Velichkov (Comm. Pure Appl. Math.) - thin-obstacle problem;

Engelstein-Spolaor-Velichkov - the one-phase problem;

Engelstein-Spolaor-Velichkov (*Geom. Topol.*) - (almost-)minimal surfaces;

Spolaor-Trey-Velichkov - the two-phase problem (for almost-minimizers).

Hypotheses

1. Monotonicity formula:

$$\frac{\partial}{\partial r}E(u_r) = \frac{1}{r}\big(E(z_r) - E(u_r)\big) + \frac{1}{r}\int_{\partial B_1} |x \cdot \nabla u_r - 2u_r|^2$$

2. Epiperimetric inequality: $E(u_r) \leq (1 - \varepsilon)E(z_r)$

Thesis

There is a unique blow-up limit
$$u_0 = \lim_{r \to 0} u_r$$

$$||u_r - u_0||_{L^2(\partial B_1)} \le r^{\varepsilon}$$
 for every $r > 0$

The free boundary is $C^{1,\varepsilon}$ *-regular.*

How to prove the epiperimetric inequality for the energy *E*?

Given a 2-homogeneous nonnegative function $z: B_1 \to \mathbb{R}$,

find $h: B_1 \to \mathbb{R}$ *such that:*

$$h \geq 0$$
 in B_1

$$h = z$$
 on ∂B_1

$$E(h) \le (1 - \varepsilon)E(z)$$

Construction of the competitior at the flat (regular) points. Spolaor-Velichkov (CPAM 2017)

What if the point is singular?

At general singular points the epiperimetric inequality cannot hold! Reifenberg (Ann. of Math. 1960) + Figalli-Serra (Invent. Math. 2018).

Theorem (*Colombo-Spolaor-Velichkov*): Let *E* be the obstacle-problem energy. **Given** a 2-homogeneous nonnegative function $z: B_1 \to \mathbb{R}$, there exists $h: B_1 \to \mathbb{R}$ such that:

$$h \ge 0$$
 in B_1

$$h = z$$
 on ∂B_1

$$E(h) \le (1 - |E(z)|^{\gamma})E(z)$$

Corollary (*Colombo-Spolaor-Velichkov*, *GAFA* 2018):

Let $u: B_1 \to \mathbb{R}$ be a solution to the obstacle problem.

Then the singular set is contained in a $C^{1,\log^{\gamma}}$ -regular manifold.